储能科学与技术 ›› 2020, Vol. 9 ›› Issue (2): 603-616.doi: 10.19799/j.cnki.2095-4239.2020.0079
张华, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 俞海龙, 贲留斌, 刘燕燕, 黄学杰()
收稿日期:
2020-02-20
出版日期:
2020-03-05
发布日期:
2020-03-15
通讯作者:
黄学杰
E-mail:xjhuang@iphy.ac.cn
作者简介:
张华(1993—),男,硕士研究生,研究方向为锂离子电池正极材料,E-mail:zhanghua15@mails.ucas.ac.cn;
基金资助:
ZHANG Hua, TIAN Mengyu, JI Hongxiang, TIAN Feng, QI Wenbin, JIN Zhou, WU Yida, ZHAN Yuanjie, YAN Yong, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie()
Received:
2020-02-20
Online:
2020-03-05
Published:
2020-03-15
Contact:
Xuejie HUANG
E-mail:xjhuang@iphy.ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2019年12月1日至2020年1月31日上线的锂电池研究论文,共有3412篇,选择其中100篇加以评论。正极材料主要研究了层状氧化物,特别是高镍三元(乃至全镍)的衰减机理和如何通过表界面修饰加以改善,富锂和高电压钴酸锂也有一部分。负极材料研究侧重于金属锂负极和硅负极,其中金属锂负极可通过制备界面膜,电解液添加剂,或者修饰集流体促进锂离子均匀沉积,减少枝晶;硅基负极则聚焦于制备复合材料来抑制体积膨胀和提高电子电导,进而提升库仑效率和循环稳定性。固态电解质研究涵盖了无机陶瓷和有机凝胶,两者的复合也是热点,液态电解质则重点研究新型添加剂或者锂盐添加效果。固态、锂硫和锂空等新技术还处在萌芽阶段,研究人员致力于寻找合适的电池形态和制备方法,保持电极的电子、离子传输性能以及反应可逆性。在测量和表征技术上,多种原位技术可以获取电极内部的形貌、锂元素分布,电位分布等信息在充放电过程中的动态变化,从而为机理研究和性能提升提供依据。理论模拟工作侧重于界面SEI形成机理分析,此外还有一些介观和宏观尺度的理论模型被提出,来理解实际使用中的力学和热力学问题。
中图分类号:
张华, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2019.12.1—2020.01.31)[J]. 储能科学与技术, 2020, 9(2): 603-616.
ZHANG Hua, TIAN Mengyu, JI Hongxiang, TIAN Feng, QI Wenbin, JIN Zhou, WU Yida, ZHAN Yuanjie, YAN Yong, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of 100 selected recent papers on lithium batteries(Dec 1, 2019 to Jan 31, 2020)[J]. Energy Storage Science and Technology, 2020, 9(2): 603-616.
1 |
AISHOVA A , PARK G T , YOON C S , et al . Cobalt-free high-capacity Ni-rich layered Li Ni0.9Mn0.1O2 cathode[J]. Advanced Energy Materials, 2019, doi: 10.1002/aenm.201903179 .
doi: 10.1002/aenm.201903179 |
2 | MU L , ZHANG R , KAN W H , et al . Dopant distribution in Co-free high-energy layered cathode materials[J]. Chemistry of Materials, 2019, 31(23): 9769-9776. |
3 | ZHANG J , ZHOU D , YANG W , et al . Probing the nature of Li+/Ni2+ disorder on the structure and electrochemical performance in Ni-based layered oxide cathodes[J]. Journal of the Electrochemical Society, 2019, 166(16): A4097-A4105. |
4 |
LEE H, JO E, CHUNG K Y , et al . In-depth TEM investigation on structural inhomogeneity within a primary Li x Ni0.835Co0.15Al0.015O2 particle: Origin of capacity decay during high-rate discharge[J]. Angewandte Chemie-International Edition, 2020, doi: 10.1002/ange.201910670 .
doi: 10.1002/ange.201910670 |
5 | NAM G W, PARK N Y , PARK N J , et al . Capacity fading of Ni-rich NCA cathodes: Effect of microcracking extent[J]. ACS Energy Letters, 2019, 4(12): 2995-3001. |
6 | REN D , FENG X , LU L , et al . Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions[J]. Applied Energy, 2019, 250: 323-332. |
7 | LIU A , ZHANG N , LI H , et al . Investigating the effects of magnesium doping in various Ni-rich positive electrode materials for lithium ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(16): A4025-A4033. |
8 | LI N , SALLIS S , PAPP J K , et al . Unraveling the cationic and anionic redox reactions in a conventional layered oxide cathode[J]. ACS Energy Letters, 2019, 4(12): 2836-2842. |
9 | GIORDANI V , TOZIER D , UDDIN J , et al . Rechargeable-battery chemistry based on lithium oxide growth through nitrate anion redox[J]. Nature Chemistry, 2019, 11(12): 1133-1138. |
10 | LIU Y , HARLOW J , DAHN J . Microstructural observations of "single crystal" positive electrode materials before and after long term cycling by cross-section scanning electron microscopy[J]. Journal of the Electrochemical Society, 2020, 167(2). |
11 | SCHWEIDLER S , DE BIASI L , GARCIA G , et al . Investigation into mechanical degradation and fatigue of high-Ni NCM cathode material: A long-term cycling study of full cells[J]. ACS Applied Energy Materials, 2019, 2(10): 7375-7384. |
12 | FENG Z , RAJAGOPALAN R , SUN D , et al . In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery[J]. Chemical Engineering Journal, 2020, 382: https://doi.org/10.1016/j.cej.2019.122959. |
13 | DAVID L , MOHANTY D , GENG L , et al . High-voltage performance of Ni-rich NCA cathodes: Linking operating voltage with cathode degradation[J]. Chemelectrochem, 2019, 6(22): 5571-5580. |
14 | YASMIN A , SHEHZAD M A , WANG J , et al . La4NiLiO8-shielded layered cathode materials for emerging high-performance safe batteries[J]. ACS Applied Materials & Interfaces, 2019, 12 (1): 826-835. |
15 | BAO Y , WANG J , QIAN Y , et al . An appropriate amount of new spinel phase induced by control synthesis for the improvement of electrochemical performance of Li-rich layered oxide cathode material[J]. Electrochimica Acta, 2020, 330: doi: 10.1016/j.electacta.2019.135240. |
16 | BI Y , LIU M , XIAO B , et al . Highly stable Ni-rich layered oxide cathode enabled by a thick protective layer with bio-tissue structure[J]. Energy Storage Materials, 2020, 24: 291-296. |
17 | CHENG X , ZHENG J , LU J , et al . Realizing superior cycling stability of Ni-rich layered cathode by combination of grain boundary engineering and surface coating[J]. Nano Energy, 2019, 62: 30-37. |
18 | DENG Y , KANG T , MA Z , et al . Safety influences of the Al and Ti elements modified LiCoO2 materials on LiCoO2/graphite batteries under the abusive conditions[J]. Electrochimica Acta, 2019, 295: 703-709. |
19 | LI S , LI K , ZHENG J , et al . Structural distortion-induced charge gradient distribution of Co ions in delithiated LiCoO2 cathode[J]. Journal of Physical Chemistry Letters, 2019, 10(24): 7537-7546. |
20 | LIU H , LIANG G , GAO C , et al . Insight into the improved cycling stability of sphere-nanorod-like micro-nanostructured high voltage spinel cathode for lithium-ion batteries[J]. Nano Energy, 2019, 66, https://doi.org/10.1016/j.nanoen.2019.104100. |
21 | SUN L , LI H , LIU H , et al . Lattice matched coating on the surface of LiNi0.5Mn1.5O4 [J]. Ceramics International, 2019, 45(12): 15745-15748. |
22 | LAI Y , ZHAO Y , CAI W , et al . Constructing ionic gradient and lithiophilic interphase for high-rate Li-metal anode[J]. Small, 2019, 15(47): https://doi.org/10.1002/smll.201905171. |
23 | CHEN D , HUANG S , ZHONG L , et al . In situ preparation of thin and rigid COF film on Li anode as artificial solid electrolyte interphase layer resisting Li dendrite puncture[J]. Advanced Functional Materials, 2019, 30(7):https://doi.org/10.1002/adfm.201907717. |
24 | CHEN L , WANG M , LV A , et al . Self-supporting dendritic copper porous film inducing the lateral growth of metallic lithium for highly stable Li metal battery[J]. Journal of the Electrochemical Society, 2019, 166(16): A4073-A4079. |
25 | GAO Y , GUO M , YUAN K , et al . Multifunctional silanization interface for high-energy and low-gassing lithium metal pouch cells[J]. Advanced Energy Materials, 2019, 10(4): https://doi.org/10.1002/aenm.201903362. |
26 | THENUWARA A C , SHETTY P P , MCDOWELL M T . Distinct nanoscale interphases and morphology of lithium metal electrodes operating at low temperatures[J]. Nano Letters, 2019, 19(12): 8664-8672. |
27 | LIU K , HU X , YANG Z , et al . Lithium-ion battery charging management considering economic costs of electrical energy loss and battery degradation[J]. Energy Conversion and Management, 2019, 195: 167-179. |
28 | JONG E K , AHN J, YOON S , et al . High dielectric, robust composite protective layer for dendrite-free and LiPF6 degradation-free lithium metal anode[J]. Advanced Functional Materials, 2019, 29(48): https://doi.org/10.1002/adfm.201905078. |
29 | JU Z , NAI J , WANG Y , et al . Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy[J]. Nature communications, 2020. 11(1): 488-488. |
30 | HE X , YANG Y , CRISTIAN M S , et al . Uniform lithium electrodeposition for stable lithium-metal batteries[J]. Nano Energy, 2020, 67:https://doi.org/10.1016/j.nanoen.2019.104172. |
31 | XU Y , WU H , HE Y , et al . Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy[J]. Nano Letters, 2020, 20(1): 418-425. |
32 | LOCHALA J , TAVERNE T , WU B , et al . Tuning solid electrolyte interphase layer properties through the integration of conversion reaction[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44204-44213. |
33 | MOORTHY B , KIM J H , LEE H W, et al . Vertically aligned carbon nanotubular structure for guiding uniform lithium deposition via capillary pressure as stable metallic lithium anodes[J]. Energy Storage Materials, 2020. 24: 602-609. |
34 | LIU S , JI X , YUE J , et al . High interfacial-energy interphase promoting safe lithium metal batteries[J]. Journal of the American Chemical Society, 2020, 142(5): 2438-2447. |
35 | CUI S , ZHAI P , YANG W , et al . Large-scale modification of commercial copper foil with lithiophilic metal layer for Li metal battery[J]. Small, 2020, . |
36 | MA J , SUNG J , LEE Y, et al . Strategic pore architecture for accommodating volume change from high Si content in lithium-ion battery anodes[J]. Advanced Energy Materials, 2019, . |
37 | JANTKE D , BERNHARD R , HANELT E , et al . Silicon-dominant anodes based on microscale silicon particles under partial lithiation with high capacity and cycle stability[J]. Journal of the Electrochemical Society, 2019, 166(16): A3881-A3885. |
38 |
YANG J , CHEN B , ZU L , et al . A space-confined atom-cluster catalytic strategy for direct superassembly of silicon nanodots carbon frame works for lithium-ion batteries[J]. Angewandte Chemie (International ed. in English), 2019, doi: 10.1002/anie.201915502 .
doi: 10.1002/anie.201915502 |
39 |
ZHU B , LIU G , LV G , et al . Minimized lithium trapping by isovalent isomorphism for high initial Coulombic efficiency of silicon anodes[J]. Science Advances, 2019, 5(11): eaax0651. doi: 10.1126/sciadv.aax0651 .
doi: 10.1126/sciadv.aax0651 |
40 | LIU W , LI H , JIN J , et al . Synergy of epoxy chemical tethers and defect-free graphene in enabling stable lithium cycling of silicon nanoparticles[J]. Angewandte Chemie-International Edition, 2019, 58(46): 16590-16600. |
41 | HARPAK N , DAVIDI G , MELAMED Y , et al . Self-catalyzed vertically aligned carbon nanotube-silicon core-shell array for highly stable, high-capacity lithium-ion batteries[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2020, 36(4): 889-896. |
42 | HUANG Q , SONG J , GAO Y , et al . Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-13434-5. |
43 | ZHAO E , ZHANG M , WANG X , et al . Local structure adaptability through multi cations for oxygen redox accommodation in Li-Rich layered oxides[J]. Energy Storage Materials, 2020, 24: 384-393. |
44 | JIANG Z , WANG S , CHEN X , et al . Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries[J]. Advanced Materials, 2019, 32(6): doi: 10.1002/adma.201906221. |
45 | LI A , LIAO X , ZHANG H , et al . Nacre-inspired composite electrolytes for load-bearing solid-state lithium-metal batteries[J]. Advanced Materials, 2019, 32(2):doi: 10.1002/adma.201905517. |
46 | AL-MASRI D , YUNIS R , ZHU H , et al . A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals[J]. Journal of Materials Chemistry A, 2019, 7(44): 25389-25398. |
47 | LI W , SUN C , JIN J , et al . Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2019, 7(48): 27304-27312. |
48 | SHEN H , YI E , HEYWOOD S , et al . Scalable freeze tape casting fabrication and pore structure analysis of 3D LLZO solid-state electrolytes[J]. ACS Applied Materials & Interfaces, 2019, 12( 3): 3494-3501. |
49 | LIU J , SHEN X , ZHOU J , et al . Nonflammable and high-voltage-tolerated polymer electrolyte achieving high stability and safety in 4.9 V-class lithium metal battery[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 45048-45056. |
50 |
ZOU J , TREWIN A , BEN T, et al . High uptake and fast transportation of LiPF6 in porous aromatic framework for solid-state Li-ion batteries[J]. Angewandte Chemie-International Edition, 2019,doi:10.1002/anie.201913380 .
doi: 10.1002/anie.201913380 |
51 | LI X , LIANG J , CHEN N , et al . Water-mediated synthesis of a superionic halide solid electrolyte[J]. Angewandte Chemie-International Edition, 2019, 58(46): 16427-16432. |
52 | WENG Y T , LIU H W , PEI A , et al . An ultrathin ionomer interphase for high efficiency lithium anode in carbonate based electrolyte[J]. Nature Communications, 2019, 10(1): 5824-5824. |
53 | CHEN X C , SACCI R L , OSTI N C , et al . Study of segmental dynamics and ion transport in polymer-ceramic composite electrolytes by quasi-elastic neutron scattering[J]. Molecular Systems Design & Engineering, 2019, 4(2): 379-385. |
54 |
LU Z , LI W , LONG Y , et al . Constructing a high-strength solid electrolyte layer by in vivo alloying with aluminum for an ultrahigh-rate lithium metal anode[J]. Advanced Functional Materials, 2019, doi: 10.1002/adfm.201907343
doi: 10.1002/adfm.201907343 |
55 | AHMED F , RAHMAN M M , SUTRADHAR S C , et al . Synthesis of an imidazolium functionalized imide based electrolyte salt and its electrochemical performance enhancement with additives in Li-ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2019, 78: 178-185. |
56 | HAN S , ZHANG H , FAN C , et al . 1,4-Dicyanobutane as a film-forming additive for high-voltage in lithium-ion batteries[J]. Solid State Ionics, 2019, 337: 63-69. |
57 | HIRATA K , MORITA Y , KAWASE T , et al . A carbonate-free electrolyte for lithium-ion batteries based on lithium bis(fluorosulfonyl)imide and 2-methylglutaronitrile enabling graphite negative electrodes[J]. Electrochimica Acta, 2019, 303: 49-55. |
58 | MENG Y , CHEN G , SHI L , et al . Operando fourier transform infrared investigation of cathode electrolyte lnterphase dynamic reversible evolution on Li1.2Ni0.2Mn0.6O2 [J]. ACS Applied Materials & Interfaces, 2019, 11(48): 45108-45117. |
59 | LAVEDA J V , LOW J E, PAGANI F , et al . Stabilizing capacity retention in NMC811/graphite full cells via TMSPi electrolyte additives[J]. ACS Applied Energy Materials, 2019, 2(10): 7036-7044. |
60 | HOFMANN A , HOEWELING A , BOHN N , et al . Additives for cycle life improvement of high-voltage LNMO-based Li-ion cells[J]. Chemelectrochem, 2019, 6(20): 5255-5263. |
61 | HAN J G , JEONG M Y , KIM K , et al . An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes[J]. Journal of Power Sources, 2020, 446: https://doi.org/10.1016/j.jpowsour.2019.227366. |
62 | DU Z , WOOD D L , BELHAROUAK I . Enabling fast charging of high energy density Li-ion cells with high lithium ion transport electrolytes[J]. Electrochemistry Communications, 2019, 103: 109-113. |
63 | DOI T, MATSUMOTO R , ENDO T , et al . Extension of anodic potential window of ester-based electrolyte solutions for high-voltage lithium ion batteries[J]. ACS Applied Energy Materials, 2019, 2(11): 7728-7732. |
64 | DAVOODABADI A , LI J , ZHOU H , et al . Effect of calendering and temperature on electrolyte wetting in lithium-ion battery electrodes[J]. Journal of Energy Storage, 2019, 26:https://doi.org/10.1016/j.est.2019.101034. |
65 | DONG L , LIU J , CHEN D , et al . Suppression of polysulfide dissolution and shuttling with glutamate electrolyte for lithium sulfur batteries[J]. ACS Nano, 2019, 13(12): 14172-14181. |
66 | PHAM H Q , TRAN Y H T , HAN J , et al . Roles of nonflammable organic liquid electrolyte in stabilizing the interface of the LiNi0.8Co0.1Mn0.1O2 cathode at 4.5 V and improving the battery performance[J]. Journal of Physical Chemistry C, 2020, 124(1): 175-185. |
67 | ZUO W , CUI Y , ZHUANG Q , et al . Effect of N,N-dimethyltrifluoroacetamide additive on low temperature performance of graphite anode[J]. International Journal of Electrochemical Science, 2020, 15(1): 382-393. |
68 | HEIST A , HAFNER SLEE S H . High-energy nickel-rich layered cathode stabilized by ionic liquid electrolyte[J]. Journal of the Electrochemical Society, 2019, 166(6): A873-A879. |
69 | WAN H , CAI L , HAN F , et al . Construction of 3D electronic/ionic conduction networks for all-solid-state lithium batteries[J]. Small, 2019, 15(50): doi: 10.1002/smll.201905849. |
70 | DOUX J M , HAN N , TAN D H S , et al . Stack pressure considerations for room-temperature all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2019, 10(1): https://doi.org/10.1002/aenm.201903253. |
71 | HWANG J Y , SHIN S , YOON C S , et al . Nano-compacted Li2S/graphene composite cathode for high-energy lithium-sulfur batteries[J]. ACS Energy Letters, 2019, 4(12): 2787-2795. |
72 | SAWAS A , BABU G , THANGAVEL N K , et al . Electrocatalysis driven high energy density Li-ion polysulfide battery[J]. Electrochimica Acta, 2019, 307: 253-259. |
73 | GAO X , YANG X , SUN Q , et al . Converting a thick electrode into vertically aligned "Thin electrodes" by 3D-Printing for designing thickness independent Li-S cathode[J]. Energy Storage Materials, 2020, 24: 682-688. |
74 | LU K , LIU Y , CHEN J , et al . Redox catalytic and quasi-solid sulfur conversion for high-capacity lean lithium sulfur batteries[J]. ACS Nano, 2019, 13(12): 14540-14548. |
75 | EL-SHINAWI H , CUSSEN E J , CORR S A . A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li-S batteries[J]. Nanoscale, 2019, 11(41): 19297-19300. |
76 | LI S , JIANG J , DONG Z , et al . Ferroconcrete-inspired construction of self-supporting Li2S cathode for high-performance lithium-sulfur batteries[J]. Microporous and Mesoporous Materials, 2020, 293,doi: 10.1016/j.micromeso.2019.109822. |
77 | ZHOU G , ZHAO S , WANG T , et al . Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries[J]. Nano letters, 2020, 20(2): 1252-1261. |
78 | XU S M , LIANG X , WU X Y , et al . Multistaged discharge constructing heterostructure with enhanced solid-solution behavior for long-life lithium-oxygen batteries[J]. Nature Communications, 2019, 10(1): 5810-5810. |
79 | WU P , SHAO G , GUO C , et al . Long cycle life, low self-discharge carbon anode for Li-ion batteries with pores and dual-doping[J]. Journal of Alloys and Compounds, 2019, 802: 620-627. |
80 | PRIFLING B , RIDDER A , HILGER A , et al . Analysis of structural and functional aging of electrodes in lithium-ion batteries during rapid charge and discharge rates using synchrotron tomography[J]. Journal of Power Sources, 2019, 443:https://doi.org/10.1016/j.jpowsour.2019.227259. |
81 | ROBINSON J B , MAIER M , ALSTER G , et al . Spatially resolved ultrasound diagnostics of Li-ion battery electrodes[J]. Physical Chemistry Chemical Physics, 2019, 21(12): 6354-6361. |
82 | MIROLO M , LEANZA D , HOLTSCHI L , et al . Post mortem and operando XPEEM: A surface-sensitive tool for studying single particles in Li-ion battery composite electrodes[J]. Analytical Chemistry, 2020, 92, 4: 3023-3031. |
83 | MASUDA H , MATSUSHITA K , ITO D, et al . Dynamically visualizing battery reactions by operando Kelvin probe force microscopy[J]. Communications Chemistry, 2019, . |
84 | RUS E D, DURA J A . In situ neutron reflectometry study of solid electrolyte interface (SEI) formation on tungsten thin-film electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 47553-47563. |
85 | YAMADA Y , SUZUKI K , YOSHINO K , et al . Ex-situ analysis of lithium distribution in a sulfide-based all-solid-state lithium battery by particle-induced X-ray and gamma-ray emission measurements[J]. Electrochemistry, 2020, 88(1): 45-49. |
86 | GOSSAGE Z T , HUI J , ZENG Y , et al . Probing the reversibility and kinetics of Li+ during SEI formation and (de)intercalation on edge plane graphite using ion-sensitive scanning electrochemical microscopy[J]. Chemical Science, 2019, 10(46): 10749-10754. |
87 | THIRNMALRAJ B , HAGOS T T , HUANG C J , et al . Nucleation and growth mechanism of lithium metal electroplating[J]. Journal of the American Chemical Society, 2019, 141(46): 18612-18623. |
88 | BANERJEE A , TANG H , WANG X , et al . Revealing nanoscale solid-solid interfacial phenomena for long-life and high-energy all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43138-43145. |
89 | SCHNEIER D , SHAHAM Y , ARDEL G , et al . Elucidation of the spontaneous passivation of silicon anodes in lithium battery electrolytes[J]. Journal of the Electrochemical Society, 2019, 166(16): A4020-A4024. |
90 | STETSON C , YIN Y , JIANG C S , et al . Temperature-dependent solubility of solid electrolyte interphase on silicon electrodes[J]. ACS Energy Letters, 2019, 4(12): 2770-2775. |
91 | LEUNG K , ROSY, NOKED M . Anodic decomposition of surface films on high voltage spinel surfaces-density function theory and experimental study[J]. the Journal of chemical physics, 2019, 151(23): 234713-234713. |
92 | WANG L N , MENAKATH A , HAN F D , et al . Identifying the components of the solid-electrolyte interphase in Li-ion batteries[J]. Nature Chemistry, 2019, 11(9): 789-796. |
93 | MAO C , RUTHER R E , GENG L , et al . Evaluation of gas formation and consumption driven by crossover effect in high-voltage lithium-ion batteries with Ni-rich NMC cathodes[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43235-43243. |
94 | LONGO R C , CAMACHO-FORERO L E , BALBUENA P B . Li2S growth on graphene: Impact on the electrochemical performance of Li-S batteries[J]. Journal of Chemical Physics, 2020, 152(1): https://doi.org/10.1063/1.5135304. |
95 | ZHANG J , ZHENG C , LI L , et al . Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-Based all-solid-state lithium batteries[J]. Advanced Energy Materials, 2019, . |
96 | PHAM H Q , LEE J U, JUNG H M , et al . Non-flammable LiNi0.8Co0.1Mn0.1O2 cathode via functional binder; stabilizing high-voltage interface and performance for safer and high-energy lithium rechargeable batteries[J]. Electrochimica Acta, 2019, 317: 711-721. |
97 | LAUDADIO E D , ILANI-KASHKOULI P , GREEN C M , et al . Interaction of phosphate with lithium cobalt oxide nanoparticles: A combined spectroscopic and calorimetric study[J]. Langmuir, 2019, 35(50): 16640-16649. |
98 | BESLI M M , USUBELLI C , METZGER M , et al . Long-term chemothermal stability of delithiated NCA in polymer solid-state batteries[J]. Journal of Materials Chemistry A, 2019, 7(47): 27135-27147. |
99 | HE M , GUO R , HOBOLD G M , et al . The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium[C]//Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1): 73-79. |
100 | DIXIT M B , ZAMAN W , BOOTWALA Y , et al . Scalable manufacturing of hybrid solid electrolytes with interface control[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 45087-45097. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||