储能科学与技术 ›› 2021, Vol. 10 ›› Issue (1): 271-279.doi: 10.19799/j.cnki.2095-4239.2020.0260
收稿日期:
2020-08-13
修回日期:
2020-09-27
出版日期:
2021-01-05
发布日期:
2021-01-08
通讯作者:
吴华伟
E-mail:wmw.king@163.com;whw_xy@163.com
作者简介:
王敏旺(1986—),男,硕士,研究方向为新能源汽车电池组管理及驱动电机控制,E-mail:基金资助:
Minwang WANG1,2(), Huawei WU1,2(), Zhen LIU1,2
Received:
2020-08-13
Revised:
2020-09-27
Online:
2021-01-05
Published:
2021-01-08
Contact:
Huawei WU
E-mail:wmw.king@163.com;whw_xy@163.com
摘要:
不同的均衡模型都可以使电池组进入均衡状态,但其均衡表现却各不相同。以往关于均衡技术评价的研究中,主要以定性分析为主。为了明确各种模型的优势和劣势以及寻找更优的均衡模型,提出了一种用于电池组均衡模型的定量评价体系。以均衡结构成本、均衡时间、可用SOC以及平均热功率作为评价指标,以均衡结构和均衡策略所组成的均衡模型作为评价对象,以96节锂离子电池串联组成电池组模型,并设置电池组初始SOC符合正态分布。通过计算以及建模仿真得到评价指标的具体数值,对数值进行归一化处理,使用雷达图对比分析不同模型的优缺点,计算综合性能值对比分析不同模型的综合表现。以4种具有典型结构的飞渡均衡模型为例,使用定量评价体系进行分析,4种均衡模型都可以使电池组进入均衡状态,其中飞渡电感模型均衡时间最短,飞渡电阻模型均衡结构成本最低,飞渡绕组模型综合表现最差,飞渡电容模型综合表现最优。该定量评价体系可快速、有效地对多种电池组均衡模型进行多维度及综合性能的评价。
中图分类号:
王敏旺, 吴华伟, 刘祯. 一种面向电池组均衡模型的定量评价体系[J]. 储能科学与技术, 2021, 10(1): 271-279.
Minwang WANG, Huawei WU, Zhen LIU. Quantitative evaluation system for battery pack equalization model[J]. Energy Storage Science and Technology, 2021, 10(1): 271-279.
1 | 华旸, 周思达, 何瑢, 等. 车用锂离子动力电池组均衡管理系统研究进展[J]. 机械工程学报, 2019, 55(20): 73-84. |
HUA Y, ZHOU S D, HE R, et al. Review on lithium-ion battery equilibrium technology applied for EVs[J]. Journal of Mechanical Engineering, 2019, 55(20): 73-84. | |
2 | 陈正刚, 徐立鹏, 张其昌, 等. 锂离子电池组均衡方法的研究进展[J]. 电源技术, 2018, 42(11): 1744-1748. |
CHEN Z G, XU L P, ZHANG Q C, et al. Progress on equalization methods of lithium-ion battery packs[J]. Chinese Journal of Power Sources, 2018, 42(11): 1744-1748. | |
3 | GALLARDO-LOZANO J, ROMERO-CADAVAL E, MILANES-MONTERO M, et al. Battery equalization active methods[J]. Journal of Power Sources, 2014, 246: 934-949. |
4 | 罗军, 牛哲荟, 田刚领, 等. 储能电池组的均衡性研究[J]. 电池, 2019, 49(5): 410-413. |
LUO J, NIU Z H, TIAN G L, et al. Equalization research of energy storage battery pack[J]. Battery Bimonthly, 2019, 49(5): 410-413. | |
5 | 谭泽富, 杨芮, 何德伍, 等. 电动汽车电池组均衡技术研究进展[J]. 电源技术, 2020, 44(4): 624-627. |
TAN Z F, YANG R, HE D W, et al. Review of battery balance technology for electric vehicles[J]. Chinese Journal of Power Sources, 2020, 44(4): 624-627. | |
6 | 史风栋, 宋大威, 熊慧, 等. 锂离子电池组均衡控制方法的研究进展[J]. 电池, 2019, 49(3): 251-254. |
SHI F D, SONG D W, XIONG H, et al. Research progress in Li-ion battery equalization control methods[J]. Battery Bimonthly, 2019, 49(3): 251-254. | |
7 | 鲁文凡, 吕帅帅, 倪红军, 等. 动力电池组均衡控制系统的研究进展[J]. 电源技术, 2017, 41(1): 161-164. |
LU W F, LV S S, NI H J, et al. Research progress of equalization strategy system for power batteries[J]. Chinese Journal of Power Sources, 2017, 41(1): 161-164. | |
8 | 唐国鹏, 赵光金, 吴文龙. 动力电池均衡控制技术研究进展[J]. 电源技术, 2015, 39(10): 2312-2315. |
TANG G P, ZHAO G J, WU W L. Research progress of power battery equalization[J]. Chinese Journal of Power Sources, 2015, 39(10): 2312-2315. | |
9 | CHEN Y, LIU X, CUI Y, et al. A multiwinding transformer cell-to-cell active equalization method for lithium-ion batteries with reduced number of driving circuits[J]. IEEE Transactions on Power Electronics, 2015, 31(7): doi: 10.1109/TPEL.2015.2482500. |
10 | DAOWD M, OMAR N, BOSSCHE P V D, et al. Passive and active battery balancing comparison based on MATLAB simulation[C]//Vehicle Power & Propulsion Conference, IEEE, 2011. |
11 | BARONTI F, RONCELLA R, SALETTI R. Performance comparison of active balancing techniques for lithium-ion batteries[J]. Journal of Power Sources, 2014, 267(6): 603-609. |
12 | 李新静, 张佳瑢, 魏引利, 等. 锂离子动力电池的温升特性分析[J]. 材料科学与工程学报, 2014, 32(6): 908-912. |
LI X J, ZHANG J R, WEI Y L, et al. Analysis of specific heat of lithium-ion power battery[J]. Journal of Materials Science and Engineering, 2014, 32(6): 908-912. | |
13 | 张娥, 徐成, 王康丽, 等. 电池组分段混合均衡控制策略[J]. 电力自动化设备, 2020, 40(3): 168-173. |
ZHANG E, XU C, WANG K L, et al. Segmented hybrid equalization control strategy for battery packs[J]. Electric Power Automation Equipment, 2020, 40(3): 168-173. | |
14 | 程俊, 曲妍, 李媛, 等. 基于剩余电量估计的电池组充放电均衡策略[J]. 电力系统保护与控制, 2020, 48(3): 122-129. |
CHENG J, QU Y, LI Y, et al. Charge and discharge equalization strategy for battery packs based on remaining capacity estimation[J]. Power System Protection and Control, 2020, 48(3): 122-129. | |
15 | 谭小军. 电动汽车动力电池管理系统设计[M]. 广州: 中山大学出版社, 2011: 128-131. |
TANG X J. Design on management system for traction battery packs in electric transmission vehicle[M]. GuangZhou: Sun Yat-sen University Press, 2011: 128-131. | |
16 | 王震坡, 孙逢春, 张承宁. 电动汽车动力蓄电池组不一致性统计分析[J]. 电源技术, 2003(5): 438-441. |
WANG Z P, SUN F C, ZHANG C N. Study on inconsistency of electric vehicle battery pack[J]. Chinese Journal of Power Sources, 2003(5): 438-441. | |
17 | 魏五星. 磷酸铁锂动力电池组性能测试与分析[D]. 武汉: 武汉理工大学, 2010. |
WEI W X. Test and analysis the performance of LiFePO4 power batteries[D]. WuHan: Wuhan University of Technology, 2010. | |
18 | TREMBLAY O, DESSAINT L A, DEKKICHE A I. A generic battery model for the dynamic simulation of hybrid electric vehicles[C]//Vehicle Power & Propulsion Conference, IEEE, 2007. |
19 | 王敏旺, 吴华伟, 戈小中. 基于落差式组合策略的串联锂离子电池组均衡方案[J]. 储能科学与技术, 2019, 8(1): 167-172. |
WANG M W, WU H W, GE X Z. Equalization scheme for series connected Li-ion battery pack based on drop combination strategy[J]. Energy Storage Science and Technology, 2019, 8(1): 167-172. | |
20 | 冯能莲, 陈龙科, 汤杰. 串联电池组电容式均衡系统研究[J]. 重庆理工大学学报, 2016, 30(1): 1-6. |
FENG N L, CHEN L K, TANG J. Study on capacitive equalizing system for series battery[J]. Journal of Chongqing Institute of Technology, 2016, 30(1): 1-6. | |
21 | HSIEH Y C, CAI Z X, WU W Z. Switched-capacitor charge equalization circuit for series-connected batteries[C]//Power Electronics Conference, IEEE, 2014. |
22 | 李泉, 周云山, 王建德, 等. 基于双层准谐振开关电容的锂电池组均衡方法[J]. 电工技术学报, 2017, 32(21): 9-15. |
LI Q, ZHOU Y S, WANG J D, et al. Equalization method of lithium battery pack based on double-tiered quasi-resonant switched capacitor[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 9-15. | |
23 | KIM M, KIM C, KIM J, et al. A chain structure of switched capacitor for improved cell balancing speed of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 3989-3999. |
24 | 李军, 黄志祥, 唐爽. 基于K最近邻遗传算法的电池均衡策略[J]. 汽车安全与节能学报, 2019, 10(4): 525-530. |
LI J, HUANG Z X, TANG S. Battery equalization strategy based on K nearest neighbor genetic algorithm[J]. Journal of Automotive Safety and Energy, 2019, 10(4): 525-530. | |
25 | 滕力, 李媛媛, 陈少棠, 等. 基于能量转换策略的锂电池组均衡技术研究[J]. 电源技术, 2020, 44(1): 45-47. |
TENG L, LI Y Y, CHEN S T, et al. Research on lithium battery pack equalization technology based on energy conversion strategy[J]. Chinese Journal of Power Sources, 2020, 44(1): 45-47. | |
26 | PARK S H, KIM T S, PARK J S, et al. A new buck-boost type battery equalizer[C]//IEEE Applied Power Electronics Conference & Exposition. IEEE, 2009. |
27 | 徐顺刚, 文瑞强, 周国华, 等. 一种单电容集中式均衡电路[J]. 电机与控制学报, 2020, 24(3): 1-10. |
XU S G, WEN R Q, ZHOU G H, et al. Single-capacitor centralized battery equalizer[J]. Electric Machines and Control, 2020, 24(3): 1-10. | |
28 | DAI H F, WEI X Z, SUN Z H, et al. A novel dual-inductor based charge equalizer for traction battery cells of electric vehicles[J]. International Journal of Electrical Power & Energy Systems, 2015, 67: 627-638. |
29 | 翟二宁, 滑娟, 崔晓宇, 等. 动力电池组主动均衡系统设计与实现[J]. 电源技术, 2020, 44(2): 249-252. |
ZHAI E N, HUA J, CUI X Y, et al. Design and implementation of power battery active balance system[J]. Chinese Journal of Power Sources, 2020, 44(2): 249-252. | |
30 | LEE K M, LEE S W, CHOI Y G, et al. Active balancing of Li-ion battery cells using transformer as energy carrier[J]. IEEE Transactions on Industrial Electronics, 2017, (2): doi: 10.1109/TIE.2016.2611481. |
31 | 郭向伟, 耿佳豪, 卜旭辉, 等. 基于反激变换器的串联电池组新型均衡方法研究[J]. 储能科学与技术, 2020, 9(3): 979-985. |
GUO X W, GENG J H, BU X H, et al. Research on novel equalization topology of series battery pack based on flyback converter[J]. Energy Storage Science and Technology, 2020, 9(3): 979-985. |
[1] | 肖浩逸, 何晓霞, 梁佳佳, 李春丽. 一种基于模态分解和机器学习的锂电池寿命预测方法[J]. 储能科学与技术, 2022, (): 1-12. |
[2] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[3] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[4] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[5] | 刘杭鑫, 陈现涛, 孙强, 赵晨曦. 软包锂离子电池真空环境下循环性能特性[J]. 储能科学与技术, 2022, 11(6): 1806-1815. |
[6] | 李夔宁, 王靖鸿, 谢翌, 刘彬, 刘江岩, 刘召婷. 锂离子电池低温复合加热策略及优化[J]. 储能科学与技术, 2022, (): 1-9. |
[7] | 李放, 闵永军, 王琛, 张涌. 基于充电过程的锂电池SOH估计和RUL预测[J]. 储能科学与技术, 2022, (): 1-12. |
[8] | 袁建华, 刘雅萍, 赵子玮, 刘宇, 谢斌斌, 何宝林. 基于IGWO-PF算法的无人机锂电池SOC估计[J]. 储能科学与技术, 2022, 11(5): 1601-1607. |
[9] | 程广玉, 刘新伟, 梅悦旎, 顾洪汇, 杨丞, 王可. 锂离子电池高温贮存容量衰减分析[J]. 储能科学与技术, 2022, 11(5): 1339-1349. |
[10] | 李磊, 李钊, 姬丹, 牛慧昌. 过充电触发的LFP和NCM锂离子电池的热失控行为:差异与原因[J]. 储能科学与技术, 2022, 11(5): 1419-1427. |
[11] | 王军, 阮琳, 邱彦靓. 锂离子电池低温快速加热方法研究进展[J]. 储能科学与技术, 2022, 11(5): 1563-1574. |
[12] | 王苏杭, 李建林, 李雅欣, 熊俊杰, 曾伟. 锂离子电池系统低温充电策略[J]. 储能科学与技术, 2022, 11(5): 1537-1542. |
[13] | 孙玉琦, 魏凤, 周洪, 周超峰. 专利视域下全球锂硫电池技术竞争态势分析[J]. 储能科学与技术, 2022, 11(5): 1657-1666. |
[14] | 余春林, 陈旭东, 宫川敏夫, 孙辉, 张兴旺, 童莉葛. 特殊结构前驱体对锂电池三元正极材料性能的提升[J]. 储能科学与技术, 2022, 11(3): 1000-1007. |
[15] | 段赞, 李玲芳, 柳鹏辉, 肖东方. MXenes系储能材料的先进制备手段与储能机制综述[J]. 储能科学与技术, 2022, 11(3): 982-990. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||