1 |
WANG Y J, TIAN J Q, SUN Z D, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems[J]. Renewable and Sustainable Energy Reviews, 2020, 131: doi: 10.1016/j.rser.2020.110015.
|
2 |
REVANKAR S R, KALKHAMBKAR V N. Grid integration of battery swapping station: A review[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102937.
|
3 |
HU X S, XIONG R, EGARDT B. Model-based dynamic power assessment of lithium-ion batteries considering different operating conditions[J]. IEEE Transactions on Industrial Informatics, 2014, 10(3): 1948-1959.
|
4 |
FARMANN A, SAUER D U. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2016, 329: 123-137.
|
5 |
LAI X, HUANG Y F, HAN X B, et al. A novel method for state of energy estimation of lithium-ion batteries using particle filter and extended Kalman filter[J]. Journal of Energy Storage, 2021, 43: doi: 10.1016/j.est.2021.103269.
|
6 |
LIN C, MU H, XIONG R, et al. Multi-model probabilities based state fusion estimation method of lithium-ion battery for electric vehicles: State-of-energy[J]. Applied Energy, 2017, 194: 560-568.
|
7 |
DONG G Z, CHEN Z H, WEI J W, et al. An online model-based method for state of energy estimation of lithium-ion batteries using dual filters[J]. Journal of Power Sources, 2016, 301: 277-286.
|
8 |
刘伟龙, 王丽芳, 王立业. 基于电动汽车工况识别预测的锂离子电池SOE估计[J]. 电工技术学报, 2018, 33(1): 17-25.
|
|
LIU W L, WANG L F, WANG L Y. Estimation of state-of-energy for electric vehicles based on the identification and prediction of driving condition[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 17-25.
|
9 |
HE H W, ZHANG Y Z, XIONG R, et al. A novel Gaussian model based battery state estimation approach: State-of-Energy[J]. Applied Energy, 2015, 151: 41-48.
|
10 |
LIU X T, WU J, ZHANG C B, et al. A method for state of energy estimation of lithium-ion batteries at dynamic currents and temperatures[J]. Journal of Power Sources, 2014, 270: 151-157.
|
11 |
WANG Y J, YANG D, ZHANG X, et al. Probability based remaining capacity estimation using data-driven and neural network model[J]. Journal of Power Sources, 2016, 315: 199-208.
|
12 |
LI W H, FAN Y, RINGBECK F, et al. Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression[J]. Applied Energy, 2022, 306: doi:10.1016/j.apenergy.2021.118114.
|
13 |
郭向伟, 邢程, 司阳, 等. RLS锂电池全工况自适应等效电路模型[J]. 电工技术学报, 2022, 37(16): 4029-4037.
|
|
GUO X W, XING C, SI Y, et al. RLS adaptive equivalent circuit model of lithium battery under full working condition[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4029-4037.
|
14 |
武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725.
|
|
WU L X, PANG H, JIN J M, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725.
|
15 |
ZHANG W G, SHI W, MA Z Y. Adaptive unscented Kalman filter based state of energy and power capability estimation approach for lithium-ion battery[J]. Journal of Power Sources, 2015, 289: 50-62.
|
16 |
刘新天, 何耀, 曾国建, 等. 考虑温度影响的锂电池功率状态估计[J]. 电工技术学报, 2016, 31(13): 155-163.
|
|
LIU X T, HE Y, ZENG G J, et al. State-of-power estimation for Li-ion battery considering the effect of temperature[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 155-163.
|
17 |
WANG Y J, PAN R, LIU C, et al. Power capability evaluation for lithium iron phosphate batteries based on multi-parameter constraints estimation[J]. Journal of Power Sources, 2018, 374: 12-23.
|
18 |
蔡雪, 张彩萍, 张琳静, 等. 基于等效电路模型的锂离子电池峰值功率估计的对比研究[J]. 机械工程学报, 2021, 57(14): 64-76.
|
|
CAI X, ZHANG C P, ZHANG L J, et al. Comparative study on state of power estimation of lithium ion battery based on equivalent circuit model[J]. Journal of Mechanical Engineering, 2021, 57(14): 64-76.
|
19 |
LEE T K, KIM Y, STEFANOPOULOU A, et al. Hybrid electric vehicle supervisory control design reflecting estimated lithium-ion battery electrochemical dynamics[C]//Proceedings of the 2011 American Control Conference. June 29—July 1, 2011, San Francisco, CA, USA. IEEE, 2011: 388-395.
|
20 |
SMITH K A, RAHN C D, WANG C Y. Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries[J]. IEEE Transactions on Control Systems Technology, 2010, 18(3): 654-663.
|
21 |
PEREZ H, SHAHMOHAMMADHAMEDANI N, MOURA S. Enhanced performance of Li-ion batteries via modified reference governors and electrochemical models[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(4): 1511-1520.
|
22 |
SUN F C, XIONG R, HE H W. Estimation of state-of-charge and state-of-power capability of lithium-ion battery considering varying health conditions[J]. Journal of Power Sources, 2014, 259: 166-176.
|
23 |
熊瑞, 闫良基, 王榘. 功率需求驱动的电动载运装备用动力电池充放电能力预测方法[J]. 机械工程学报, 2021, 57(20): 161-171.
|
|
XIONG R, YAN L J, WANG J. Power demand-driven battery charging and discharging capability prediction method for electric vehicles[J]. Journal of Mechanical Engineering, 2021, 57(20): 161-171.
|