储能科学与技术 ›› 2023, Vol. 12 ›› Issue (11): 3528-3537.doi: 10.19799/j.cnki.2095-4239.2023.0447

• 储能测试与评价 • 上一篇    下一篇

适应高电流倍率工况的锂离子电池等效电路模型

代云腾1(), 彭乔1(), 刘天琪1, 曾雪洋2, 陈刚2, 李燕2, 孟锦豪1   

  1. 1.四川大学电气工程学院,四川 成都 610065
    2.国网四川省电力公司电力科学研究院,四川 成都 610041
  • 收稿日期:2023-06-27 修回日期:2023-07-03 出版日期:2023-11-05 发布日期:2023-11-16
  • 通讯作者: 彭乔 E-mail:daiyunteng@stu.scu.edu.cn;qpeng@scu.edu.cn
  • 作者简介:代云腾(1998—),男,硕士研究生,从事电池储能系统参与电网频率支撑方向研究,E-mail:daiyunteng@stu.scu.edu.cn
  • 基金资助:
    国家电网有限公司科技项目(5108-202299262A-1-0-ZB)

Application of equivalent circuit model of lithium-ion batteries to high current rate condition

Yunteng DAI1(), Qiao PENG1(), Tianqi LIU1, Xueyang ZENG2, Gang CHEN2, Yan LI2, Jinhao MENG1   

  1. 1.College of Electrical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
    2.State Grid Sichuan Electric Power Research Institute, Chengdu 610041, Sichuan, China
  • Received:2023-06-27 Revised:2023-07-03 Online:2023-11-05 Published:2023-11-16
  • Contact: Qiao PENG E-mail:daiyunteng@stu.scu.edu.cn;qpeng@scu.edu.cn

摘要:

等效电路模型(equivalent circuit model,ECM)是电池模型的主要类型之一,对电池特性分析和状态估计非常重要。然而,当前广泛使用的基于阻容(RC)结构的电池ECM无法应对复杂多变场景。例如,传统ECM无法反映电池极化电压在高电流倍率下的特殊现象,即传统ECM不能准确表征电池在高电流倍率下的阻抗特性。针对这一问题,本团队在不同SOC下进行了电池峰值电流实验,通过实验数据分析了电池在峰值电流下的极化电压和阻抗特性。然后,引入负电阻电容环节拟合实验结果,对传统ECM进行改进以充分体现高电流倍率下的电池极化现象。通过比较传统RC环节与负电阻电容环节特性,提出了基于阻抗特性曲线拐点的参数分离方法,其计算量小,模型求解便捷。最后,对分离参数后的模型进行验证,结果表明所提ECM及参数获取方法能够较好地模拟高电流倍率下电池的极化电压变化,进而更加准确地表征电池电压特性,模型输出与实验结果误差小于0.05 V。所提ECM相比于传统的RC模型精确度得到了极大提升,且不依赖于复杂的电化学模型,维持了模型的简单结构。

关键词: 锂离子电池, 等效电路模型, 电池阻抗特性, 极化电压, 峰值电流实验

Abstract:

The equivalent circuit model (ECM) is one of the primary types of battery models that play a crucial role in battery characteristic analysis and state estimation. However, the widely used resistor-capacitor (RC) structured ECM currently in use fails to adapt to complex and dynamic scenarios. For instance, traditional ECMs fail to accurately reflect the special phenomenon of battery polarization voltage under high current rates, unable to accurately characterize the impedance characteristics of batteries at high current rate conditions. To address this, the present study conducts battery peak current experiments at different states of charge and analyzes the polarization voltage and impedance characteristics of the battery under peak current conditions using experimental data. Then, a negative resistance-capacitance segment is introduced to fit the experimental results, and the conventional ECM is improved to better represent the polarization phenomena under high current rate conditions. Additionally, a parameter separation method based on the inflection points of impedance curves is proposed by comparing the characteristics of the conventional RC segment with the negative RC segment. The proposed method has low computational complexity and a convenient model solution. Finally, the model with separated parameters is validated. The results show that the proposed ECM and parameter identification method can effectively realize the polarization voltage variation of the battery under high current rate conditions and can accurately represent the battery voltage characteristics. The experimental results demonstrate that the proposed model maintains an error of <0.05 V. Moreover, the proposed ECM greatly enhances the accuracy compared with the conventional RC model, and it does not rely on complex electrochemical models, maintaining a simple model structure.

Key words: lithium-ion batteries, equivalent circuit models, battery impedance characteristics, polarization voltages, peak current experiments

中图分类号: