储能科学与技术 ›› 2023, Vol. 12 ›› Issue (11): 3556-3571.doi: 10.19799/j.cnki.2095-4239.2023.0732
郝峻丰(), 朱璟, 张新新, 孙蔷馥, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2023-10-17
出版日期:
2023-11-05
发布日期:
2023-11-16
通讯作者:
黄学杰
E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
作者简介:
郝峻丰(1999—),男,博士研究生,研究方向为锂离子电池,E-mail:haojunfeng21@mails.ucas.ac.cn;
Junfeng HAO(), Jing ZHU, Xinxin ZHANG, Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2023-10-17
Online:
2023-11-05
Published:
2023-11-16
Contact:
Xuejie HUANG
E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science 从2023年8月1日至2023年9月30日上线的锂电池研究论文,共有4706篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元、尖晶石材料的表面包覆和掺杂改性,以及其在长循环中的结构演变等。硅基复合负极材料的研究包括材料制备和对电极结构的优化以缓冲体积变化,并重点关注了功能性黏结剂的应用和界面的改性。金属锂负极的研究集中于金属锂的表面修饰。固态电解质的研究主要包括对硫化物固态电解质、氯化物固态电解质、氧化物固态电解质和复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注层状氧化物正极材料在硫化物、氧化物固态电池中的应用。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。电池技术方面的研究还包括干法等电极制备技术。测试技术涵盖了锂沉积和正极中锂离子输运等方面。理论模拟工作涉及电解液的物理性质模拟,界面方面工作侧重于固态电池中电极界面的稳定性研究。
中图分类号:
郝峻丰, 朱璟, 张新新, 孙蔷馥, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.8.1—2023.9.30)[J]. 储能科学与技术, 2023, 12(11): 3556-3571.
Junfeng HAO, Jing ZHU, Xinxin ZHANG, Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2023 to Sep. 30, 2023)[J]. Energy Storage Science and Technology, 2023, 12(11): 3556-3571.
1 | CHANG M, CHENG F Y, ZHANG W, et al. Antioxidant layer enables chemically stable cathode-electrolyte interface towards durable and safe Li-ion batteries[J]. Energy Storage Materials, 2023, 61: 102872. |
2 | YE Q, LI X H, ZHANG W K, et al. Slurry-coated LiNi0.8Co0.1Mn0.1O2-Li3InCl6 composite cathode with enhanced interfacial stability for sulfide-based all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(15): 18878-18888. |
3 | MORINO Y, SHIOTA A, KANADA S, et al. Design of cathode coating using niobate and phosphate hybrid material for sulfide-based solid-state battery[J]. ACS Applied Materials & Interfaces, 2023, 15(30): 36086-36095. |
4 | RAHMAN M M, XIA K X, YANG X Q, et al. Asymmetric lithium extraction and insertion in high voltage spinel at fast rate[J]. Nano Letters, 2023, 23(15): 7135-7142. |
5 | NA I, KIM H, KUNZE S, et al. Monolithic 100% silicon wafer anode for all-solid-state batteries achieving high areal capacity at room temperature[J]. ACS Energy Letters, 2023, 8(4): 1936-1943. |
6 | CHEN C, ZHANG J M, HU B R, et al. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode[J]. Nature Communications, 2023, 14: 4018. |
7 | SUN Z H, WANG Y K, SHEN S Y, et al. Directing (110) oriented lithium deposition through high-flux solid electrolyte interphase for dendrite-free lithium metal batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(41): e202309622. |
8 | SHEN H L, CAI Y L, MA Z T, et al. Layered manganese phosphorus trisulfides for high-performance lithium-ion batteries and the storage mechanism[J]. Carbon Energy, 2023, 5(3): doi: 10.1002/cey2.290. |
9 | SONG C Y, ZHAO J T, MA S B, et al. Ordered lithium-ion conductive interphase with gradient desolvation effects for fast-charging lithium metal batteries[J]. ACS Energy Letters, 2023, 8(8): 3404-3411. |
10 | LI Y X, SONG S B, KIM H, et al. A lithium superionic conductor for millimeter-thick battery electrode[J]. Science, 2023, 381: 50-53. |
11 | JIN Y M, HE Q S, LIU G Z, et al. Fluorinated Li10GeP2S12 enables stable all-solid-state lithium batteries[J]. Advanced Materials, 2023, 35(19): doi: 10.1002/adma.202211047. |
12 | CHOI I H, KIM E, JO Y S, et al. Solvent-engineered synthesis of sulfide solid electrolytes for high performance all-solid-state batteries[J]. Journal of Industrial and Engineering Chemistry, 2023, 121: 107-113. |
13 | INDRAWAN R F, GAMO H, NAGAI A, et al. Chemically understanding the liquid-phase synthesis of argyrodite solid electrolyte Li6PS5Cl with the highest ionic conductivity for all-solid-state batteries[J]. Chemistry of Materials, 2023, 35(6): 2549-2558. |
14 | LEE H, KIM G, SONG Y, et al. Hybrid liquid-solid composite electrolytes for sulfide-based solid-state batteries: Advantages and limitation[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202305373. |
15 | GANESAN P, SOANS M, ALI CAMBAZ M, et al. Fluorine-substituted halide solid electrolytes with enhanced stability toward the lithium metal[J]. ACS Applied Materials & Interfaces, 2023, 15(32): 38391-38402. |
16 | ZHANG H C, YU Z Z, CHEN H N, et al. Li-richening strategy in Li2ZrCl6 lattice towards enhanced ionic conductivity[J]. Journal of Energy Chemistry, 2023, 79: 348-356. |
17 | KWAK H, KIM J S, HAN D, et al. Boosting the interfacial superionic conduction of halide solid electrolytes for all-solid-state batteries[J]. Nature Communications, 2023, 14: 2459. |
18 | ZHANG S M, ZHAO F P, CHEN J T, et al. A family of oxychloride amorphous solid electrolytes for long-cycling all-solid-state lithium batteries[J]. Nature Communications, 2023, 14: 3780. |
19 | LU G J, LIU W, YANG Z G, et al. Superlithiophilic, ultrastable, and ionic-conductive interface enabled long lifespan all-solid-state lithium-metal batteries under high mass loading[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202304407. |
20 | FU Y D, YANG K, XUE S D, et al. Surface defects reinforced polymer-ceramic interfacial anchoring for high-rate flexible solid-state batteries[J]. Advanced Functional Materials, 2023, 33(10): doi: 10.1002/adfm.202210845. |
21 | SAHAL M, MOLLOY J, NARAYANAN V R, et al. Robust and manufacturable lithium lanthanum titanate-based solid-state electrolyte thin films deposited in open air[J]. ACS Omega, 2023, 8(31): 28651-28662. |
22 | HU L, WANG J Z, WANG K, et al. A cost-effective, ionically conductive and compressible oxychloride solid-state electrolyte for stable all-solid-state lithium-based batteries[J]. Nature Communications, 2023, 14: 3807. |
23 | HAN Z S, ZHANG R H, JIANG J L, et al. High-efficiency lithium-ion transport in a porous coordination chain-based hydrogen-bonded framework[J]. Journal of the American Chemical Society, 2023, 145(18): 10149-10158. |
24 | LU D, ZHANG S H, LI J D, et al. Transformed solvation structure of noncoordinating flame-retardant assisted propylene carbonate enabling high voltage Li-ion batteries with high safety and long cyclability[J]. Advanced Energy Materials, 2023, 13(28): doi: 10.1002/aenm.202300684. . |
25 | CAI Q Q, JIA H, LI G J, et al. Outstanding performances of graphite||NMC622 pouch cells enabled by a non-inert diluent[J]. Journal of Energy Chemistry, 2023, 81: 593-602. |
26 | WANG Z C, HAN R, HUANG D, et al. Co-intercalation-free ether-based weakly solvating electrolytes enable fast-charging and wide-temperature lithium-ion batteries[J]. ACS Nano, 2023, 17(18): 18103-18113. |
27 | MA T, NI Y X, LI D T, et al. Reversible solid-solid conversion of sulfurized polyacrylonitrile cathodes in lithium-sulfur batteries by weakly solvating ether electrolytes[J]. Angewandte Chemie International Edition, 2023, 62(43): doi: 10.1002/anie.202310761: e202310761-e202310761. |
28 | WANG A X, SONG Y N, ZHAO Z F, et al. Solvation engineering enables high-voltage lithium ion and metal batteries operating under -50 and 80 ℃[J]. Advanced Functional Materials, 2023, 33(35): doi: 10.1002/adfm.202302503. |
29 | CHENG F Y, XU J A, WEI P, et al. Interface engineering via regulating electrolyte for high-voltage layered oxide cathodes-based Li-ion batteries[J]. Advanced Science, 2023, 10(12): doi: 10.1002/advs.202206714. |
30 | PHAN A L, JAYAWARDANA C, LE P M, et al. Solvent-free electrolyte for high-temperature rechargeable lithium metal batteries[J]. Advanced Functional Materials, 2023, 33(34): doi: 10.1002/adfm.202301177. |
31 | QIN M S, ZENG Z Q, WU Q, et al. 1, 3, 5-Trifluorobenzene endorsed EC-free electrolyte for high-voltage and wide-temperature lithium-ion batteries[J]. Journal of Energy Chemistry, 2023, 85: 49-57. |
32 | MAO S L, MAO J L, SHEN Z Y, et al. Specific adsorption-oxidation strategy in cathode inner Helmholtz plane enabling 4.6 V practical lithium-ion full cells[J]. Nano Letters, 2023, 23(15): 7014-7022. |
33 | FAN Z Q, ZHOU X Z, QIU J W, et al. Sulfur-rich additive-induced interphases enable highly stable 4.6 V LiNi0.5Co0.2Mn0.3O2||graphite pouch cells[J]. Angewandte Chemie International Edition, 2023, 62(39): doi: 10.1002/anie.202308888: e202308888-e202308888. |
34 | KIM W, KIM T H, YU J S, et al. Interface-targeting individually functionalized ionic additive to construct stable interphase on selective electrode surface for practical lithium-ion pouch cells[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202306068. |
35 | LAN X W, YANG S S, MENG T, et al. A multifunctional electrolyte additive with solvation structure regulation and electrode/electrolyte interface manipulation enabling high-performance Li-ion batteries in wide temperature range[J]. Advanced Energy Materials, 2023, 13(16): doi: 10.1002/aenm.202203449. |
36 | ZHANG J B, ZHANG H K, WENG S T, et al. Multifunctional solvent molecule design enables high-voltage Li-ion batteries[J]. Nature Communications, 2023, 14: 2211. |
37 | HAO Z D, WANG C J, WU Y E, et al. Electronegative nanochannels accelerating lithium-ion transport for enabling highly stable and high-rate lithium metal anodes[J]. Advanced Energy Materials, 2023, 13(28): doi: 10.1002/aenm.202204007. . |
38 | LEE J, PARK H, HWANG J, et al. Delocalized lithium ion flux by solid-state electrolyte composites coupled with 3D porous nanostructures for highly stable lithium metal batteries[J]. ACS Nano, 2023, 17(16): 16020-16035. |
39 | KAUTZ D J, CAO X A, GAO P Y, et al. Designing electrolytes with controlled solvation structure for fast-charging lithium-ion batteries[J]. Advanced Energy Materials, 2023, 13(35): doi: 10.1002/aenm. 202301199. |
40 | WENG S T, ZHANG X A, YANG G J, et al. Temperature-dependent interphase formation and Li+ transport in lithium metal batteries[J]. Nature Communications, 2023, 14: 4474. |
41 | PRAKASH P, FALL B, AGUIRRE J, et al. A soft co-crystalline solid electrolyte for lithium-ion batteries[J]. Nature Materials, 2023, 22(5): 627-635. |
42 | CHEN Y W, LI M H, LIU Y E, et al. Origin of dendrite-free lithium deposition in concentrated electrolytes[J]. Nature Communications, 2023, 14: 2655. |
43 | HUANG J Y, CHENG C Y, LAI Y M, et al. Engineering cathode-electrolyte interface of high-voltage spinel LiNi0.5Mn1.5O4 via halide solid-state electrolyte coating[J]. ACS Applied Materials & Interfaces, 2023, 15(34): 40648-40655. |
44 | LEE D, CUI Z H, GOODENOUGH J B, et al. Interphase stabilization of LiNi0.5Mn1.5O4 cathode for 5 V-class all-solid-state batteries[J]. Small, 2023: doi: 10.1002/smll.202306053: e2306053-e2306053. |
45 | WANG K J, LIANG Z T, WENG S T, et al. Surface engineering strategy enables 4.5 V sulfide-based all-solid-state batteries with high cathode loading and long cycle life[J]. ACS Energy Letters, 2023, 8(8): 3450-3459. |
46 | WANG K, GU Z Q, XI Z W, et al. Li3TiCl6 as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries[J]. Nature Communications, 2023, 14: 1396. |
47 | LUO J, SUN Q A, LIANG J W, et al. Rapidly in situ cross-linked poly(butylene oxide) electrolyte interface enabling halide-based all-solid-state lithium metal batteries[J]. ACS Energy Letters, 2023, 8(9): 3676-3684. |
48 | JANGID M K, DAVIS A L, LIAO D W, et al. Improved rate capability in composite solid-state battery electrodes using 3-D architectures[J]. ACS Energy Letters, 2023, 8(6): 2522-2531. |
49 | XU H F, ZHU Q, ZHAO Y, et al. Phase-changeable dynamic conformal electrode/electrolyte interlayer enabling pressure-independent solid-state lithium metal batteries[J]. Advanced Materials, 2023, 35(18): doi: 10.1002/adma.202212111. |
50 | PARK R J Y, FINCHER C D, BADEL A F, et al. Ultrahigh areal capacity Li electrodeposition at metal-solid electrolyte interfaces under minimal stack pressures enabled by interfacial Na-K liquids[J]. ACS Applied Materials & Interfaces, 2023, 15(30): 36117-36123. |
51 | LIU T, ZHANG L, LI J W, et al. In situ formed interfacial layer for all-solid-state lithium batteries with sulfide electrolyte films[J]. Journal of Power Sources, 2023, 580: 233290. |
52 | LIU Y, WANG C C, YOON S G, et al. Aluminum foil negative electrodes with multiphase microstructure for all-solid-state Li-ion batteries[J]. Nature Communications, 2023, 14: 3975. |
53 | JIN B Y, LAI T X, MANTHIRAM A. High-mass-loading anode-free lithium-sulfur batteries enabled by a binary binder with fast lithium-ion transport[J]. ACS Energy Letters, 2023, 8(9): 3767-3774. |
54 | CHEN Z Z, LU M J, QIAN Y, et al. Ultra-low dosage lignin binder for practical lithium-sulfur batteries[J]. Advanced Energy Materials, 2023, 13(17): doi: 10.1002/aenm.202300092. |
55 | LUO R J, GUO Q F, TANG Z H, et al. Boosting redox kinetics of sulfur electrochemistry by manipulating interfacial charge redistribution and multiple spatial confinement in mott-schottky electrocatalysts[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202306115. |
56 | ZHANG H, CHEN J W, LI Z, et al. Operating lithium-sulfur batteries in an ultrawide temperature range from ‒50 ℃ to 70 ℃[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202304433. |
57 | LIU G D, HE Y, LIU Z X, et al. In situ visualization of the pinning effect of planar defects on Li ion insertion[J]. Nano Letters, 2023, 23(15): 6839-6844. |
58 | KIM B, PARK M J. All-solid-state lithium-sulfur batteries enabled by single-ion conducting binary nanoparticle electrolytes[J]. Materials Horizons, 2023, 10(10): 4139-4147. |
59 | HUANG J H, SHAO Y F, LIU Z H, et al. Nano sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries[J]. Journal of Power Sources, 2023, 570: 233045. |
60 | CAO D X, SUN X A, LI F, et al. Understanding electrochemical reaction mechanisms of sulfur in all-solid-state batteries through operando and theoretical studies[J]. Angewandte Chemie International Edition, 2023, 62(20): doi: 10.1002/anie.202302363. |
61 | FAN B, GUAN Z B, WU L L, et al. Particle size control of cathode components for high-performance all-solid-state lithium-sulfur batteries[J]. Journal of the American Ceramic Society, 2023, 106(10): 5781-5794. |
62 | WANG D W, JHANG L J, KOU R, et al. Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte[J]. Nature Communications, 2023, 14: 1895. |
63 | FIEDLER M, CANGAZ S, HIPPAUF F, et al. Mechanistic insights into the cycling behavior of sulfur dry-film cathodes[J]. Advanced Sustainable Systems, 2023, 7(4): doi: 10.1002/adsu.202200439. |
64 | LIU Y T, GONG X T, PODDER C, et al. Roll-to-roll solvent-free manufactured electrodes for fast-charging batteries[J]. Joule, 2023, 7(5): 952-970. |
65 | KOMODA Y, ISHIBASHI K, KURATANI K, et al. Effects of drying rate and slurry microstructure on the formation process of LiB cathode and electrochemical properties[J]. Journal of Power Sources, 2023, 568: 232983. |
66 | JU Z Y, ZHENG T R, CALDERON J, et al. Scalable fast-charging aligned battery electrodes enabled by bidirectional freeze-casting[J]. Nano Letters, 2023, 23(18): 8787-8793. |
67 | HIKIMA K, SATO Y, YOKOI A, et al. Fabrication and electrochemical properties of electrode composites for oxide-type all-solid-state batteries through electrostatic integrated assembly[J]. Heliyon, 2023, 9(7): e17889. |
68 | PINILLA S, RYAN S, MCKEON L, et al. Additive manufacturing of Li-ion batteries: A comparative study between electrode fabrication processes[J]. Advanced Energy Materials, 2023, 13(15): doi: 10.1002/aenm.202203747. |
69 | ADAMSON A, TUUL K, BÖTTICHER T, et al. Improving lithium-ion cells by replacing polyethylene terephthalate jellyroll tape[J]. Nature Materials, 2023: 1-7. |
70 | TAO R M, STEINHOFF B, SAWICKI C H, et al. Unraveling the impact of the degree of dry mixing on dry-processed lithium-ion battery electrodes[J]. Journal of Power Sources, 2023, 580: 233379. |
71 | YONAGA A, KAWAUCHI S, MORI Y, et al. Effects of dry powder mixing on electrochemical performance of lithium-ion battery electrode using solvent-free dry forming process[J]. Journal of Power Sources, 2023, 581: 233466. |
72 | PARK K, RYU M, JUNG Y, et al. Mitigation of binder migration behavior during the drying process by applying an electric field for fast-charging in lithium-ion batteries[J]. Batteries & Supercaps, 2023, 6(9): doi: 10.1002/batt.202300170. |
73 | ARGYROPOULOS D- P, SELINIS P, VRITHIAS N R, et al. Poly-lactic acid/graphene anode for lithium-ion batteries manufactured with a facile hot-pressed solvent-free process[J]. Journal of the Electrochemical Society, 2023, 170(5): doi: 10.1149/1945-7111/acd0a8. |
74 | GULSOY B, VINCENT T A, BRIGGS C, et al. In-situ measurement of internal gas pressure within cylindrical lithium-ion cells[J]. Journal of Power Sources, 2023, 570: 233064. |
75 | ALSHEIMER L, HEIDRICH B, PESCHEL C, et al. Suppressing gas evolution in Li4Ti5O12-based pouch cells by high temperature formation[J]. Journal of Power Sources, 2023, 575: 233207. |
76 | MORINO Y, TSUKASAKI H, MORI S. Microscopic degradation mechanism of argyrodite-type sulfide at the solid electrolyte-cathode interface[J]. ACS Applied Materials & Interfaces, 2023, 15(19): 23051-23057. |
77 | MATSUDA R, TANAKA A, YANAGIHARA K, et al. Deterioration analysis of Si composite anodes for all-solid-state batteries during charge-discharge by auger electron spectroscopy and scanning electron microscopy with energy dispersive spectroscopy[J]. The Journal of Physical Chemistry C, 2023, 127(33): 16508-16514. |
78 | GU Z Q, MA J L, ZHU F, et al. Atomic-scale study clarifying the role of space-charge layers in a Li-ion-conducting solid electrolyte[J]. Nature Communications, 2023, 14: 1632. |
79 | CAO D X, JI T T, SINGH A, et al. Unveiling the mechanical and electrochemical evolution of nanosilicon composite anodes in sulfide-based all-solid-state batteries[J]. Advanced Energy Materials, 2023, 13(14): doi: 10.1002/aenm.202203969. |
80 | PARK Y S, KIM K, LEE J W, et al. Effect of cell pressure on the electrochemical performance of all-solid-state lithium batteries with zero-excess Li metal anode[J]. Journal of the American Ceramic Society, 2023, 106(12): 7322-7330. |
81 | LIANG Z T, XIANG Y X, WANG K J, et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy[J]. Nature Communications, 2023, 14: 259. |
82 | FENG G X, JIA H, SHI Y P, et al. Imaging solid-electrolyte interphase dynamics using operando reflection interference microscopy[J]. Nature Nanotechnology, 2023, 18(7): 780-789. |
83 | SHITANDA I, SUGAYA K, BABA C, et al. Rheo-impedance measurements for the dispersibility evaluation of electrode slurries[J]. ACS Applied Electronic Materials, 2023, 5(8): 4394-4400. |
84 | GÖLDNER V, QUACH L, ADHITAMA E, et al. Laser desorption/ionization-mass spectrometry for the analysis of interphases in lithium ion batteries[J]. iScience, 2023, 26(9): 107517. |
85 | WOODAHL C, JAMNUCH S, AMADO A, et al. Probing lithium mobility at a solid electrolyte surface[J]. Nature Materials, 2023, 22(7): 848-852. |
86 | GOPAL R, WU L A, LEE Y, et al. Transient polarization and dendrite initiation dynamics in ceramic electrolytes[J]. ACS Energy Letters, 2023, 8(5): 2141-2149. |
87 | LODICO J J, MECKLENBURG M, CHAN H L, et al. Operando spectral imaging of the lithium ion battery's solid-electrolyte interphase[J]. Science Advances, 2023, 9(28): doi: 10.1126/sciadv.adg5135. |
88 | ZHU H T, LI Z P, LI C L, et al. Near-in-situ electrochemical impedance spectroscopy analysis based on lithium iron phosphate electrode[J]. Electrochimica Acta, 2023, 464: 142919. |
89 | HIDALGO M F V, APACHITEI G, DOGARU D, et al. Design of experiments for optimizing the calendering process in Li-ion battery manufacturing[J]. Journal of Power Sources, 2023, 573: 233091. |
90 | CHOUDHURY S, HUANG Z J, AMANCHUKWU C V, et al. Ion conducting polymer interfaces for lithium metal anodes: Impact on the electrodeposition kinetics[J]. Advanced Energy Materials, 2023, 13(35): doi: 10.1002/aenm.202301899. |
91 | GAO Y C, YAO N, CHEN X A, et al. Data-driven insight into the reductive stability of ion-solvent complexes in lithium battery electrolytes[J]. Journal of the American Chemical Society, 2023: doi: 10.1021/jacs.3c08346. |
92 | QUIRK J A, DAWSON J A. Design principles for grain boundaries in solid-state lithium-ion conductors[J]. Advanced Energy Materials, 2023, 13(32): doi: 10.1002/aenm.202301114. |
93 | YANG M H, LIU Y S, MO Y F. Lithium crystallization at solid interfaces[J]. Nature Communications, 2023, 14: 2986. |
94 | SOHIB A, IRHAM M A, KARUNAWAN J, et al. Interface analysis of LiCl as a protective layer of Li1.3Al0.3Ti1.7(PO4)3 for electrochemically stabilized all-solid-state Li-metal batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 16562-16570. |
95 | WU Y J, XU J W, LU P S, et al. Thermal stability of sulfide solid electrolyte with lithium metal[J]. Advanced Energy Materials, 2023, doi: 10.1002/aenm.202301336. |
96 | BROWNING K L, WESTOVER A S, BROWNING J F, et al. In situ measurement of buried electrolyte–electrode interfaces for solid state batteries with nanometer level precision[J]. ACS Energy Letters, 2023, 8(4): 1985-1991. |
97 | KWON H, CHOI H J, JANG J K, et al. Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries[J]. Nature Communications, 2023, 14: 4047. |
98 | FENG Y Y, LI Y, LIN J, et al. Production of high-energy 6-Ah-level Li ||LiNi0.83Co0.11Mn0.06O2 multi-layer pouch cells via negative electrode protective layer coating strategy[J]. Nature Communications, 2023, 14: 3639. |
99 | HU P, CHEN W, WANG Y, et al. Fatigue-free and skin-like supramolecular ion-conductive elastomeric interphases for stable lithium metal batteries[J]. ACS Nano, 2023, 17(16): 16239-16251. |
100 | SUN Z H, WANG Y K, QIN Y Y, et al. Ultra-thin and ultra-light self-lubricating layer with accelerated dynamics for anode-free lithium metal batteries[J]. Energy Storage Materials, 2023, 58: 110-122. |
[1] | 詹世英, 李欢欢, 胡方. 水系锌离子电容器正极材料的研究进展[J]. 储能科学与技术, 2023, 12(9): 2799-2810. |
[2] | 李岳峰, 韦银涛, 彭宪州, 项峰, 王杭烽, 孙勇, 徐卫潘, 黄文强. 海拔高度对储能锂电池包强制风冷系统影响的热仿真分析及优化设计[J]. 储能科学与技术, 2023, 12(9): 2954-2961. |
[3] | 周向阳, 胡颖杰, 梁家浩, 周其杰, 文康, 陈松, 杨娟, 唐晶晶. 天然鳞片石墨球化尾料的高性能负极材料制备及储锂特性研究[J]. 储能科学与技术, 2023, 12(9): 2767-2777. |
[4] | 江婉薇, 梁呈景, 钱历, 刘梅城, 朱孟想, 马骏. 锡基三维石墨烯泡沫调控及其锂电池负极性能[J]. 储能科学与技术, 2023, 12(9): 2746-2751. |
[5] | 申江卫, 周灿彪, 舒星, 陈峥, 刘永刚. 宽温度环境下基于改进电化学模型的锂电池荷电状态估计[J]. 储能科学与技术, 2023, 12(9): 2904-2916. |
[6] | 岑官骏, 乔荣涵, 申晓宇, 朱璟, 郝峻丰, 孙蔷馥, 张新新, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.6.1—2023.7.31)[J]. 储能科学与技术, 2023, 12(9): 3003-3018. |
[7] | 张梓楠, 陈剑. Nb掺杂Na3V2O2 (PO4 ) 2F空心微球钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2023, 12(8): 2370-2381. |
[8] | 赵争光, 陈振营, 翟光群, 张希, 庄小东. Sc/O掺杂硫化物固态电解质的制备及全固态电池性能[J]. 储能科学与技术, 2023, 12(8): 2412-2423. |
[9] | 刘欢, 彭娜, 高清雯, 李文鹏, 杨志荣, 王景涛. 冠醚掺杂的聚合物固态电解质对全固态锂电池性能的影响[J]. 储能科学与技术, 2023, 12(8): 2401-2411. |
[10] | 刘志浩, 杜童, 李瑞瑞, 邓涛. 宽温域、高电压、安全无EC电解液研究进展[J]. 储能科学与技术, 2023, 12(8): 2504-2525. |
[11] | 张鼎, 叶子贤, 刘镇铭, 易群, 史利娟, 郭慧娟, 黄毅, 王莉, 何向明. 钠离子电池黑磷基负极材料研究进展[J]. 储能科学与技术, 2023, 12(8): 2482-2490. |
[12] | 汪红辉, 刘一凡, 储德韧. 不同荷电状态钛酸锂电池高温日历老化研究[J]. 储能科学与技术, 2023, 12(8): 2606-2614. |
[13] | 张吉禄, 董育辰, 宋强, 袁思鸣, 郭孝东. 多晶及单晶高镍三元材料LiNi0.9Co0.05Mn0.05O2 的可控制备及其电化学储锂特性[J]. 储能科学与技术, 2023, 12(8): 2382-2389. |
[14] | 郝增辉, 刘训良, 孟缘, 孟楠, 温治. 电极界面微观结构对固态锂离子电池性能的影响[J]. 储能科学与技术, 2023, 12(7): 2095-2104. |
[15] | 武明虎, 岳程鹏, 张凡, 李俊晓, 黄伟, 胡胜, 唐靓. 多尺度分解下GRU-MLR组合的锂电池剩余使用寿命预测方法[J]. 储能科学与技术, 2023, 12(7): 2220-2228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||