储能科学与技术 ›› 2023, Vol. 12 ›› Issue (11): 3556-3571.doi: 10.19799/j.cnki.2095-4239.2023.0732

• 热点点评 • 上一篇    下一篇

锂电池百篇论文点评(2023.8.12023.9.30

郝峻丰(), 朱璟, 张新新, 孙蔷馥, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()   

  1. 中国科学院物理研究所,北京 100190
  • 收稿日期:2023-10-17 出版日期:2023-11-05 发布日期:2023-11-16
  • 通讯作者: 黄学杰 E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
  • 作者简介:郝峻丰(1999—),男,博士研究生,研究方向为锂离子电池,E-mail:haojunfeng21@mails.ucas.ac.cn

Reviews of selected 100 recent papers for lithium batteriesAug. 12023 to Sep. 302023

Junfeng HAO(), Jing ZHU, Xinxin ZHANG, Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2023-10-17 Online:2023-11-05 Published:2023-11-16
  • Contact: Xuejie HUANG E-mail:haojunfeng21@mails.ucas.ac.cn;xjhuang@iphy. ac.cn

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science 从2023年8月1日至2023年9月30日上线的锂电池研究论文,共有4706篇,选择其中100篇加以评论。正极材料的研究集中于高镍三元、尖晶石材料的表面包覆和掺杂改性,以及其在长循环中的结构演变等。硅基复合负极材料的研究包括材料制备和对电极结构的优化以缓冲体积变化,并重点关注了功能性黏结剂的应用和界面的改性。金属锂负极的研究集中于金属锂的表面修饰。固态电解质的研究主要包括对硫化物固态电解质、氯化物固态电解质、氧化物固态电解质和复合固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。固态电池方向更多关注层状氧化物正极材料在硫化物、氧化物固态电池中的应用。锂硫电池的研究重点是提高硫正极的活性,抑制“穿梭”效应。电池技术方面的研究还包括干法等电极制备技术。测试技术涵盖了锂沉积和正极中锂离子输运等方面。理论模拟工作涉及电解液的物理性质模拟,界面方面工作侧重于固态电池中电极界面的稳定性研究。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights 100 recent published papers on lithium batteries. We searched the Web of Science and found 4706 papers online from Aug. 1, 2023 to Sep. 30, 2023. 100 of them were selected to be highlighted. Spinel oxides and High-nickel ternary layered oxides as cathode materials are still under extensive investigations of the effects of doping and interface modifications on their electrochemical performances and surface and bulk evolution of structures under prolong cycling. For alloying mechanism anode materials, such as silicon-based composite materials, many researchers pay attention to material preparations and the optimization of electrode structure to buffer volume changes, and emphasize on the application of functional binders and modification of the interface. Large efforts were devoted to design the three-dimensional structure electrode, interface modification and inhomogeneity plating of lithium metal anode. The researches of solid-state electrolytes are mainly focused on their structure design and performances in sulfide based-, chloride based-, oxide based-solid-state electrolytes and their composites, whereas liquid electrolytes are improved by the optimal design of solvents and lithium salts for different battery applications and novel functional additives. For solid-state batteries, the studies are mainly focused on the suitability of layered oxide cathode materials with sulfide based- and oxide based-solid-state electrolytes. To suppress the "shuttle effect" and activate sulfur of Li-S battery, composite sulfur cathode with high ion/electron conductive matrix and functional binders are studied. Other relevant works are also presented to the dry electrode coating technology. There are a few papers for the characterization techniques of lithium-ion transport in the cathode and lithium deposition. Furthermore, theoretical calculations are done to understand the viscosity of electrolyte. The interface solid state electrolyte/cathode are also widely studied.

Key words: lithium batteries, cathode material, anode material, electrolyte, battery technology

中图分类号: