储能科学与技术 ›› 2023, Vol. 12 ›› Issue (11): 3545-3555.doi: 10.19799/j.cnki.2095-4239.2023.0512
收稿日期:
2023-07-31
修回日期:
2023-08-29
出版日期:
2023-11-05
发布日期:
2023-11-16
通讯作者:
唐西胜
E-mail:songshuangiee@mail.iee.ac.cn;tang@mail.iee.ac.cn
作者简介:
宋爽(1994—),女,博士研究生,特别研究助理,主要研究方向为锂离子电池储能系统安全管理与运行优化,E-mail:songshuangiee@mail.iee.ac.cn;
基金资助:
Shuang SONG1(), Fu LI1,2, Xisheng TANG1,2()
Received:
2023-07-31
Revised:
2023-08-29
Online:
2023-11-05
Published:
2023-11-16
Contact:
Xisheng TANG
E-mail:songshuangiee@mail.iee.ac.cn;tang@mail.iee.ac.cn
摘要:
锂离子电池安全状态评估综合了影响电池安全的因素,定量获取内外部条件对电池安全的持续影响程度,在全寿命周期内监测和跟踪电池的安全状态,可为故障超前预警和智能运维提供判定依据,对提升系统的安全性和可靠性具有重要意义。然而,锂离子电池失效模式多、影响机制复杂、安全状态定义模糊,目前专家学者对于电池管理系统和大数据平台中的电池安全状态评估结果的可用性和准确性还存在诸多疑问。本文通过对近期相关文献的探讨,综述了当前主流的电池安全状态定义与分级策略,介绍了定性和定量两种电池安全状态评估方法,分析了影响电池安全状态的多种因素及其安全边界。对于电池安全状态影响因素多而复杂的问题,着重总结了电压、环境温度、电流、机械变形、极限外部条件、荷电状态、健康状态、内阻、析锂状态这9种因素对锂离子电池安全的影响机制。最后提出了当前锂离子电池安全状态评估研究在多因素耦合关联机制、安全阈值迁移模型和定量评估方法三方面还存在不足,为接下来的研究指明了发展方向。
中图分类号:
宋爽, 李福, 唐西胜. 锂离子电池安全状态评估研究进展[J]. 储能科学与技术, 2023, 12(11): 3545-3555.
Shuang SONG, Fu LI, Xisheng TANG. Research progress on the safety-state assessment of lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(11): 3545-3555.
1 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. | |
2 | 唐亮, 尹小波, 吴候福, 等. 电化学储能产业发展对安全标准的需求[J]. 储能科学与技术, 2022, 11(8): 2645-2652. |
TANG L, YIN X B, WU H F, et al. Demand for safety standards in the development of the electrochemical energy storage industry[J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. | |
3 | ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192. |
4 | DENG J, BAE C, MARCICKI J, et al. Safety modelling and testing of lithium-ion batteries in electrified vehicles[J]. Nature Energy, 2018, 3(4): 261-266. |
5 | GANDOMAN F H, JAGUEMONT J, GOUTAM S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges[J]. Applied Energy, 2019, 251: 113343. |
6 | 孙振宇, 王震坡, 刘鹏, 等. 新能源汽车动力电池系统故障诊断研究综述[J]. 机械工程学报, 2021, 57(14): 87-104. |
SUN Z Y, WANG Z P, LIU P, et al. Overview of fault diagnosis in new energy vehicle power battery system[J]. Journal of Mechanical Engineering, 2021, 57(14): 87-104. | |
7 | 刘同宇, 李师, 付卫东, 等. 大容量磷酸铁锂动力电池热失控预警策略研究[J]. 中国安全科学学报, 2021, 31(11): 120-126. |
LIU T Y, LI S, FU W D, et al. Study on early warning strategy of large LFP traction battery's thermal runaway[J]. China Safety Science Journal, 2021, 31(11): 120-126. | |
8 | 周洋捷, 王震坡, 洪吉超, 等. 新能源汽车动力电池"过充电-热失控"安全防控技术研究综述[J]. 机械工程学报, 2022, 58(10): 112-135. |
ZHOU Y J, WANG Z P, HONG J C, et al. Review of overcharge-to-thermal runaway and the control strategy for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2022, 58(10): 112-135. | |
9 | 山彤欣, 王震坡, 洪吉超, 等. 新能源汽车动力电池"机械滥用-热失控"及其安全防控技术综述[J]. 机械工程学报, 2022, 58(14): 252-275. |
SHAN T X, WANG Z P, HONG J C, et al. Overview of "mechanical abuse-thermal runaway" of electric vehicle power battery and its safety prevention and control technology[J]. Journal of Mechanical Engineering, 2022, 58(14): 252-275. | |
10 | 芮新宇, 冯旭宁, 韩雪冰, 等. 锂离子电池热失控蔓延问题研究综述[J]. 电池工业, 2020, 24(4): 193-201, 205. |
RUI X Y, FENG X N, HAN X B, et al. Review on the thermal runaway propagation of lithium-ion batteries[J]. Chinese Battery Industry, 2020, 24(4): 193-201, 205. | |
11 | 金阳. 锂离子电池储能电站早期安全预警及防护[M]. 北京: 机械工业出版社, 2022. |
JIN Y. Early safety warning and protection lithium-ion battery storage power station[M]. Beijing: China Machine Press, 2022. | |
12 | XIA Q, WANG Z L, REN Y, et al. A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles[J]. Journal of Power Sources, 2018, 386: 10-20. |
13 | 于璐, 张辉, 田培根, 等. 一种退役动力电池梯次利用储能系统安全评估方法[J]. 太阳能学报, 2022, 43(5): 446-453. |
YU L, ZHANG H, TIAN P G, et al. A battery safety evaluation method for reuse of retired power battery in energy storage system[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 446-453. | |
14 | 朱振威, 邱景义, 王莉, 等. 人工智能在锂离子电池研发中的应用[J]. 电化学, 2022, 28(12): 3-22. |
ZHU Z W, QIU J Y, WANG L, et al. Application of artificial intelligence to lithium-ion battery research and development[J]. Journal of Electrochemistry, 2022, 28(12): 3-22. | |
15 | HU X S, ZHANG K, LIU K L, et al. Advanced fault diagnosis for lithium-ion battery systems: A review of fault mechanisms, fault features, and diagnosis procedures[J]. IEEE Industrial Electronics Magazine, 2020, 14(3): 65-91. |
16 | LYU N W, JIN Y, XIONG R, et al. Real-time overcharge warning and early thermal runaway prediction of Li-ion battery by online impedance measurement[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1929-1936. |
17 | DEY S, SHI Y, SMITH K, et al. Safer batteries via active fault tolerant control[C]// 2019 American Control Conference (ACC). July 10-12, 2019, Philadelphia, PA, USA. IEEE, 2019: 1561-1566. |
18 | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
19 | International SAE, Electric and hybrid electric vehicle rechargeable energy storage system (RESS) safety and abuse testing: Surface Vehicle Recommended Practice SAEJ2464[R], 2009. |
20 | CABRERA-CASTILLO E, NIEDERMEIER F, JOSSEN A. Calculation of the state of safety (SOS) for lithium ion batteries[J]. Journal of Power Sources, 2016, 324: 509-520. |
21 | ASHTIANI C. Analysis of battery safety and hazards' risk mitigation[J]. ECS Transactions, 2008, 11(19): 1-11. |
22 | KOCH D, SCHWEIGER H G. Possibilities for a quick onsite safety-state assessment of stand-alone lithium-ion batteries[J]. Batteries, 2022, 8(11): 213. |
23 | 于璐, 张辉, 田培根, 等. 一种梯次利用电池可重构储能系统多级在线安全评估及风险预警定位方法[J]. 太阳能学报, 2022, 43(5): 461-467. |
YU L, ZHANG H, TIAN P G, et al. Multi-level on-line safety assessment of reconfigurable energy storage system using secondary batteries risk warning postitioning method[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 461-467. | |
24 | MOHAMMADI F, SANJARI M, SAIF M. A real-time blockchain-based state estimation system for battery energy storage systems[C]// 2022 IEEE Kansas Power and Energy Conference (KPEC). April 25-26, 2022, Manhattan, KS, USA. IEEE, 2022: 1-4. |
25 | 李焓宁, 李相俊. 考虑电池安全状态的储能电站能量管理策略[J]. 供用电, 2023, 40(8): 21-27. |
LI H N, LI X J. Energy management strategy for energy storage stations considering battery state of safety[J]. Distribution & Utilization, 2023, 40(8): 21-27. | |
26 | QI C, ZHU Y L, GAO F, et al. Safety analysis of lithium-ion battery by rheology-mutation theory coupling with fault tree method[J]. Journal of Loss Prevention in the Process Industries, 2017, 49: 603-611. |
27 | BRIK K, BEN AMMAR F. Causal tree analysis of depth degradation of the lead acid battery[J]. Journal of Power Sources, 2013, 228: 39-46. |
28 | HU G F, HUANG P F, BAI Z H, et al. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery[J]. eTransportation, 2021, 10: 100140. |
29 | HUANG P F, HU G F, YONG Z, et al. Fire risk assessment of battery transportation and storage by combining fault tree analysis and fuzzy logic[J]. Journal of Loss Prevention in the Process Industries, 2022, 77: 104774. |
30 | 黄沛丰. 锂离子电池火灾危险性及热失控临界条件研究[D]. 合肥: 中国科学技术大学, 2018. |
HUANG P F. Research on the fire risk of lithium ion battery and the critical condition of thermal runaway behavior[D]. Hefei: University of Science and Technology of China, 2018. | |
31 | TAN X J, QIU J Z, LI J, et al. Lithium plating as limiting phenomena for estimating safety during lithium-ion battery charging[J]. International Journal of Electrochemical Science, 2020, 15(9): 9233-9244. |
32 | DU J Y, LIU Y, MO X Y, et al. Impact of high-power charging on the durability and safety of lithium batteries used in long-range battery electric vehicles[J]. Applied Energy, 2019, 255: 113793. |
33 | 王怀铷. 磷酸铁锂储能电池过充热失控特性研究[D]. 郑州: 郑州大学, 2021. |
WANG H R. Research on overcharging thermal runaway characteristic of lithium iron phosphate energy storage battery[D]. Zhengzhou: Zhengzhou University, 2021. | |
34 | 任东生, 冯旭宁, 韩雪冰, 等. 锂离子电池全生命周期安全性演变研究进展[J]. 储能科学与技术, 2018, 7(6): 957-966. |
REN D S, FENG X N, HAN X B, et al. Recent progress on evolution of safety performance of lithium-ion battery during aging process[J]. Energy Storage Science and Technology, 2018, 7(6): 957-966. | |
35 | 王绥军. 基于负极界面副反应的锂离子电池性能失效研究[D]. 天津: 天津大学, 2020. |
WANG S J. A study on performance failure of lithium ion batteries via anodic side reactions[D]. Tianjin: Tianjin University, 2020. | |
36 | 黄海江. 锂离子电池安全性研究及影响因素分析[D]. 上海: 中国科学院研究生院(上海微系统与信息技术研究所), 2005. |
HUANG H J. Study on safety of lithium-ion batteries[D]. Shanghai: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 2005. | |
37 | 李磊, 李钊, 姬丹, 等. 过充电触发的LFP和NCM锂离子电池的热失控行为: 差异与原因[J]. 储能科学与技术, 2022, 11(5): 1419-1427. |
LI L, LI Z, JI D, et al. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: The differences and reasons[J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. | |
38 | 马天翼, 王芳, 徐大鹏, 等. 动力电池轻度电滥用积累造成的性能和安全性劣化研究[J]. 储能科学与技术, 2020, 9(2): 400-408. |
MA T Y, WANG F, XU D P, et al. Investigation of the performance and safety degradation caused by slight accumulation of electricity in traction batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 400-408. | |
39 | 贺浩. 磷酸铁锂18650动力锂离子电池失效机理及动态脱嵌锂机理研究[D]. 长沙: 湖南大学, 2016. |
HE H. The failure mechanism and dynamic lithium intercalation/deintercalation mechanism of the LiFePO4 Li ion power battery[D]. Changsha: Hunan University, 2016. | |
40 | 黄德扬, 陈自强, 周诗尧, 等. 极寒环境下动力锂离子电池特性[J]. 上海交通大学学报, 2019, 53(9): 1051-1057. |
HUANG D Y, CHEN Z Q, ZHOU S Y, et al. Characteristics of power lithium-ion batteries at extreme cold environment[J]. Journal of Shanghai Jiao Tong University, 2019, 53(9): 1051-1057. | |
41 | 陈虎, 厉运杰, 李新峰, 等. 圆柱形LiFePO4锂离子电池高温循环失效分析[J]. 电池, 2022, 52(1): 71-74. |
CHEN H, LI Y J, LI X F, et al. Analysis of elevated temperature cycling failure of cylindrical LiFePO4 Li-ion battery[J]. Battery Bimonthly, 2022, 52(1): 71-74. | |
42 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
43 | KATZER F, MÖßLE P, SCHAMEL M, et al. Adaptive fast charging control using impedance-based detection of lithium deposition[J]. Journal of Power Sources, 2023, 555: 232354. |
44 | LIN X K, KHOSRAVINIA K, HU X S, et al. Lithium plating mechanism, detection, and mitigation in lithium-ion batteries[J]. Progress in Energy and Combustion Science, 2021, 87: 100953. |
45 | SCHINDLER S, BAUER M, PETZL M, et al. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells[J]. Journal of Power Sources, 2016, 304: 170-180. |
46 | ECKER M, SHAFIEI SABET P, SAUER D U. Influence of operational condition on lithium plating for commercial lithium-ion batteries-Electrochemical experiments and post-mortem-analysis[J]. Applied Energy, 2017, 206: 934-946. |
47 | LEISING R A, PALAZZO M J, TAKEUCHI E S, et al. Abuse testing of lithium-ion batteries: Characterization of the overcharge reaction of LiCoO2/graphite cells[J]. Journal of the Electrochemical Society, 2001, 148(8): A838. |
48 | 李奎杰, 楼平, 管敏渊, 等. 锂离子电池热失控多维信号演化及耦合机制研究综述[J]. 储能科学与技术, 2023, 12(3): 899-912. |
LI K J, LOU P, GUAN M Y, et al. A review of multi-dimensional signal evolution and coupling mechanism of lithium-ion battery thermal runaway[J]. Energy Storage Science and Technology, 2023, 12(3): 899-912. | |
49 | 许辉勇, 范亚飞, 张志萍, 等. 针刺和挤压作用下动力电池热失控特性与机理综述[J]. 储能科学与技术, 2020, 9(4): 1113-1126. |
XU H Y, FAN Y F, ZHANG Z P, et al. Thermal runaway characteristics and mechanisms of Li-ion batteries for electric vehicles under nail penetration and crush[J]. Energy Storage Science and Technology, 2020, 9(4): 1113-1126. | |
50 | 裴普成, 陈嘉瑶, 吴子尧. 锂离子电池自放电机理及测量方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 53-65. |
PEI P C, CHEN J Y, WU Z Y. Self-discharge mechanism and measurement methods for lithium ion batteries[J]. Journal of Tsinghua University (Science and Technology), 2019, 59(1): 53-65. | |
51 | OUYANG M G, REN D S, LU L G, et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2+LiyMn2O4 composite cathode[J]. Journal of Power Sources, 2015, 279: 626-635. |
52 | ROTH E P, DOUGHTY D H. Thermal abuse performance of high-power 18650 Li-ion cells[J]. Journal of Power Sources, 2004, 128(2): 308-318. |
53 | TOBISHIMA S, YAMAKI J, HIRAI T. Safety and capacity retentionof lithium ion cells after long periods of storage[J]. Journal of Applied Electrochemistry, 2000, 30(4): 405-410. |
54 | STIASZNY B, ZIEGLER J C, KRAUß E E, et al. Electrochemical characterization and post-mortem analysis of aged LiMn2O4-Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion batteries. Part I: Cycle aging[J]. Journal of Power Sources, 2014, 251: 439-450. |
55 | STIASZNY B, ZIEGLER J C, KRAUß E E, et al. Electrochemical characterization and post-mortem analysis of aged LiMn2O4-NMC/graphite lithium ion batteries part Ⅱ: Calendar aging[J]. Journal of Power Sources, 2014, 258: 61-75. |
56 | PAN Y, REN D S, HAN X B, et al. Lithium plating detection based on electrochemical impedance and internal resistance analyses[J]. Batteries, 2022, 11(8): 206. |
57 | MC CARTHY K, GULLAPALLI H, KENNEDY T. Real-time internal temperature estimation of commercial Li-ion batteries using online impedance measurements[J]. Journal of Power Sources, 2022, 519: 230786. |
58 | DOTOLI M, MILO E, GIULIANO M, et al. Detection of lithium plating in Li-ion cell anodes using realistic automotive fast-charge profiles[J]. Batteries, 2021, 7(3): 46. |
59 | HAHN M, GRÜNE L, PLANK C, et al. Model predictive fast charging control by means of a real-time discrete electrochemical model[J]. Journal of Energy Storage, 2021, 42: 103056. |
60 | JANAKIRAMAN U, GARRICK T R, FORTIER M E. Review—Lithium plating detection methods in Li-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167: 160552. |
61 | GAO X L, LIU X H, XIE W L, et al. Multiscale observation of Li plating for lithium-ion batteries[J]. Rare Metals, 2021, 40(11): 3038-3048. |
62 | RUAN H J, BARRERAS J V, ENGSTROM T, et al. Lithium-ion battery lifetime extension: A review of derating methods[J]. Journal of Power Sources, 2023, 563: 232805. |
63 | TIAN Y, LIN C, LI H L, et al. Detecting undesired lithium plating on anodes for lithium-ion batteries-A review on the in situ methods[J]. Applied Energy, 2021, 300: 117386. |
[1] | 李悦, 王博, 吴楠. 石墨烯/Si/SiO x 纳米复合材料的制备及储锂性能研究[J]. 储能科学与技术, 2023, 12(9): 2752-2759. |
[2] | 曾少鸿, 吴伟雄, 刘吉臻, 汪双凤, 叶石丰, 冯振宇. 锂离子电池浸没式冷却技术研究综述[J]. 储能科学与技术, 2023, 12(9): 2888-2903. |
[3] | 陈欣, 李云伍, 梁新成, 李法霖, 张志冬. 基于模态分解的Transformer-GRU联合电池健康状态估计[J]. 储能科学与技术, 2023, 12(9): 2927-2936. |
[4] | 李纪伟, 刘睿涵, 吕桃林, 潘隆, 马常军, 李清波, 赵芝芸, 杨文, 解晶莹. 基于局部离群点检测和标准差方法的锂离子电池组早期故障诊断[J]. 储能科学与技术, 2023, 12(9): 2917-2926. |
[5] | 黄晓伟, 李少鹏, 张校刚. 负极补锂锂化裕度对电芯性能的影响及机理研究[J]. 储能科学与技术, 2023, 12(9): 2727-2734. |
[6] | 周向阳, 胡颖杰, 梁家浩, 周其杰, 文康, 陈松, 杨娟, 唐晶晶. 天然鳞片石墨球化尾料的高性能负极材料制备及储锂特性研究[J]. 储能科学与技术, 2023, 12(9): 2767-2777. |
[7] | 江婉薇, 梁呈景, 钱历, 刘梅城, 朱孟想, 马骏. 锡基三维石墨烯泡沫调控及其锂电池负极性能[J]. 储能科学与技术, 2023, 12(9): 2746-2751. |
[8] | 高欣, 王若谷, 高文菁, 邓泽军, 梁睿祺, 杨騉. 基于运行数据的储能电站电池组一致性评估方法[J]. 储能科学与技术, 2023, 12(9): 2937-2945. |
[9] | 官亦标, 沈进冉, 刘家亮, 渠展展, 高飞, 刘施阳, 郭翠静, 周淑琴, 付珊珊. 以安全高质量应用为导向的储能锂离子电池综合性能评价标准[J]. 储能科学与技术, 2023, 12(9): 2946-2953. |
[10] | 唐程波, 锁要红, 何昭坤. 基于正弦函数的液冷板上流体流向对锂离子电池散热性能的影响[J]. 储能科学与技术, 2023, 12(8): 2547-2555. |
[11] | 左安昊, 方儒卿, 李哲. 锂离子电池单颗粒动力学表征方法综述[J]. 储能科学与技术, 2023, 12(8): 2457-2481. |
[12] | 陈满, 程志翔, 赵春朋, 彭鹏, 雷旗开, 金凯强, 王青松. 锂离子电池储能集装箱爆炸危害数值模拟[J]. 储能科学与技术, 2023, 12(8): 2594-2605. |
[13] | 郭煜, 王亦伟, 钟隽, 杜进桥, 田杰, 李艳, 蒋方明. 基于增量容量曲线的锂离子电池微内短路故障诊断方法[J]. 储能科学与技术, 2023, 12(8): 2536-2546. |
[14] | 黄永浩, 臧国景, 朱霨亚, 廖友好, 李伟善. LiF添加剂改善含锂陶瓷隔膜与4.35 V LiNi0.8Co0.1Mn0.1O2 正极的界面稳定性[J]. 储能科学与技术, 2023, 12(8): 2361-2369. |
[15] | 杨佳兴, 张恒运, 徐屹东. 基于电化学-热耦合模型的锂离子电池组件产热分析[J]. 储能科学与技术, 2023, 12(8): 2615-2625. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||