储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 252-269.doi: 10.19799/j.cnki.2095-4239.2023.0910

• 热点点评 • 上一篇    下一篇

锂电池百篇论文点评(2023.10.12023.11.30

张新新(), 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()   

  1. 中国科学院物理研究所,北京 100190
  • 收稿日期:2023-12-19 出版日期:2024-01-05 发布日期:2024-01-22
  • 通讯作者: 黄学杰 E-mail:zhangxinxin223@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
  • 作者简介:张新新(1999—),女,硕士研究生,研究方向为锂离子电池,E-mail:zhangxinxin223@mails.ucas.ac.cn

Reviews of selected 100 recent papers for lithium batteriesOct. 12023 to Nov. 302023

Xinxin ZHANG(), Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2023-12-19 Online:2024-01-05 Published:2024-01-22
  • Contact: Xuejie HUANG E-mail:zhangxinxin223@mails.ucas.ac.cn;xjhuang@iphy. ac.cn

摘要:

该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science 从2023年10月1日至2023年11月30日上线的锂电池研究论文,共有5155篇,选择其中100篇加以评论。正极材料的研究集中于尖晶石结构LiNi0.5Mn1.5O4材料和富锂材料的掺杂改性、晶界工程、长循环中的结构演变等。负极材料的研究重点包括硅基负极的结构设计和黏结剂开发、金属锂负极的骨架结构设计。固态电解质的研究主要包括对氯化物固态电解质、硫化物固态电解质、聚合物固态电解质和氧化物固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,正极材料的体相改性和表面包覆、锂金属负极的界面构筑和三维结构设计、电解质的离子输运特性、固态锂硫电池的性能提升策略有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计,功能涂层和电解液的开发。电池技术方面的研究还包括电极结构导电剂和黏结剂的研究、干法电极制备技术、石墨负极的制造新方法、锂氧电池的电解质设计。电极中锂离子输运和反应动力学、电解液中的锂沉积形貌和SEI结构演变、固态电池的复合正极微观结构和金属锂负极界面等表征分析和锂枝晶的调控机制理论模拟论文也有多篇。

关键词: 锂电池, 正极材料, 负极材料, 电解质, 电池技术

Abstract:

This bimonthly review paper highlights 100 recently published papers on lithium batteries. We searched the Web of Science and found 5155 papers from October 1, 2023, to November 30, 2023. The selected studies focus on various aspects of lithium batteries. Investigations on LiNi0.5Mn1.5O4 and Li-rich oxide cathode materials have focused on the effects of doping, grain boundary engineering, and structural evolution during prolonged cycling. Structural electrodes and designed adhesives are the main methods for improving the cycling performances of Si-based anodes. The skeleton structure design of lithium metal anode has attracted significant attention. Studies on solid-state electrolytes include the structure design and performances in chloride-based, sulfide-based, polymer-based, and oxide-based solid-state electrolytes. Conversely, liquid electrolytes can be improved by optimizing the solvent and lithium salt design for different battery applications and new functional additives can be used. For solid-state batteries, the modification and surface coating of the cathode, interface construction and three-dimensional structural design of the lithium metal anode, ion transport properties of solid-state electrolytes, and performance improvement strategies for solid-state lithium-sulfur batteries have been widely investigated. Studies on lithium-sulfur batteries are mainly based on the structural design of the cathode and the development of functional coating and liquid electrolytes. There have been few studies on electrode structure conductive agents and binders, dry methods for making electrodes, new preparation methods of graphite-based anodes, and electrolyte design for lithium-oxygen batteries. Characterization techniques of ion transport and reaction kinetics in electrodes, lithium deposition morphology and SEI structural evolution in electrolytes, the microstructure of composite positive electrodes in solid-state batteries, and interface of lithium metal anode are presented. Theoretical simulations are directed to the control mechanism of inducing lithium dendrites.

Key words: lithium batteries, cathode material, anode material, electrolyte, battery technology

中图分类号: