储能科学与技术 ›› 2024, Vol. 13 ›› Issue (1): 252-269.doi: 10.19799/j.cnki.2095-4239.2023.0910
张新新(), 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰()
收稿日期:
2023-12-19
出版日期:
2024-01-05
发布日期:
2024-01-22
通讯作者:
黄学杰
E-mail:zhangxinxin223@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
作者简介:
张新新(1999—),女,硕士研究生,研究方向为锂离子电池,E-mail:zhangxinxin223@mails.ucas.ac.cn;
Xinxin ZHANG(), Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2023-12-19
Online:
2024-01-05
Published:
2024-01-22
Contact:
Xuejie HUANG
E-mail:zhangxinxin223@mails.ucas.ac.cn;xjhuang@iphy. ac.cn
摘要:
该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science 从2023年10月1日至2023年11月30日上线的锂电池研究论文,共有5155篇,选择其中100篇加以评论。正极材料的研究集中于尖晶石结构LiNi0.5Mn1.5O4材料和富锂材料的掺杂改性、晶界工程、长循环中的结构演变等。负极材料的研究重点包括硅基负极的结构设计和黏结剂开发、金属锂负极的骨架结构设计。固态电解质的研究主要包括对氯化物固态电解质、硫化物固态电解质、聚合物固态电解质和氧化物固态电解质的结构设计以及相关性能研究。其他电解液和添加剂的研究则主要包括不同电解质和溶剂对各类电池材料体系适配的研究,以及对新的功能性添加剂的探索。针对固态电池,正极材料的体相改性和表面包覆、锂金属负极的界面构筑和三维结构设计、电解质的离子输运特性、固态锂硫电池的性能提升策略有多篇文献报道。锂硫电池的研究重点是硫正极的结构设计,功能涂层和电解液的开发。电池技术方面的研究还包括电极结构导电剂和黏结剂的研究、干法电极制备技术、石墨负极的制造新方法、锂氧电池的电解质设计。电极中锂离子输运和反应动力学、电解液中的锂沉积形貌和SEI结构演变、固态电池的复合正极微观结构和金属锂负极界面等表征分析和锂枝晶的调控机制理论模拟论文也有多篇。
中图分类号:
张新新, 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.10.1—2023.11.30)[J]. 储能科学与技术, 2024, 13(1): 252-269.
Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yida WU, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2023 to Nov. 30, 2023)[J]. Energy Storage Science and Technology, 2024, 13(1): 252-269.
51 | HUANG W Z, LIU Z Y, XU P, et al. High-areal-capacity anode-free all-solid-state lithium batteries enabled by interconnected carbon-reinforced ionic-electronic composites[J]. Journal of Materials Chemistry A, 2023, 11(24): 12713-12718. |
52 | CAO D X, JI T T, WEI Z X, et al. Enhancing lithium stripping efficiency in anode-free solid-state batteries through self-regulated internal pressure[J]. Nano Letters, 2023, 23(20): 9392-9398. |
53 | OH J, CHOI S H, KIM J Y, et al. Anode-less all-solid-state batteries operating at room temperature and low pressure[J]. Advanced Energy Materials, 2023, 13(38): doi: 10.1002/aenm. 202301508. |
54 | FALLARINO L, CHISHTI U N, PESCE A, et al. Towards lithium-free solid-state batteries with nanoscale Ag/Cu sputtered bilayer electrodes[J]. Chemical Communications, 2023, 59(82): 12346-12349. |
55 | SCHLAUTMANN E, WEIß A, MAUS O, et al. Impact of the solid electrolyte particle size distribution in sulfide-based solid-state battery composites[J]. Advanced Energy Materials, 2023, 13(41): doi: 10.1002/aenm.202302309. |
56 | KIM W, NOH J, LEE S, et al. Aging property of halide solid electrolyte at the cathode interface[J]. Advanced Materials, 2023, 35(32): doi: 10.1002/adma.202301631. |
57 | KIM H, CHOI H N, HWANG J Y, et al. Tailoring the interface between sulfur and sulfide solid electrolyte for high-areal-capacity all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2023, 8(10): 3971-3979. |
58 | HOANG H A, KIM D. High energy and sustainable solid-state lithium-sulfur battery enabled by the force-bearing cathode and multifunctional double-layer hybrid solid electrolyte[J]. Chemical Engineering Journal, 2023, 474: 145982. |
59 | KIM J T, RAO A, NIE H Y, et al. Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life[J]. Nature Communications, 2023, 14: 6404. |
60 | LIU T J, KUM L W, SINGH D K, et al. Thermal, electrical, and environmental safeties of sulfide electrolyte-based all-solid-state Li-ion batteries[J]. ACS Omega, 2023, 8(13): 12411-12417. |
61 | BATZER M, GUNDLACH D, MICHALOWSKI P, et al. Scalable production of separator and cathode suspensions via extrusion for sulfidic solid-state batteries[J]. ChemElectroChem, 2023, 10(23): doi: 10.1002/celc.202300452. |
62 | WU C C, HO Y C, CHUNG S H. A low-self-discharge high-loading polysulfide cathode design for lithium-sulfur cells[J]. Journal of Materials Chemistry A, 2023, 11(45): 24651-24660. |
63 | DONG T W, ZHANG J D, AI Z Y, et al. Built-in ultrafine CoS2 catalysis in confined ordered micro-mesoporous carbon nanoreactors for high-performance Li-S batteries[J]. Journal of Power Sources, 2023, 573: 233136. |
64 | KIM H, MIN K J, BANG S, et al. Long-lasting, reinforced electrical networking in a high-loading Li2S cathode for high-performance lithium-sulfur batteries[J]. Carbon Energy, 2023, 5(8): doi: 10.1002/cey2.308. |
65 | LI H, CHUAI M Y, XIAO X, et al. Regulating the spin state configuration in bimetallic phosphorus trisulfides for promoting sulfur redox kinetics[J]. Journal of the American Chemical Society, 2023, 145(41): 22516-22526. |
66 | ZUO X T, ZHEN M M, LIU D P, et al. A multifunctional catalytic interlayer for propelling solid-solid conversion kinetics of Li2S2 to Li2S in lithium-sulfur batteries[J]. Advanced Functional Materials, 2023, 33(15): doi: 10.1002/adfm.202214206. |
67 | LIU Y T, XU L H, YU Y Q, et al. Stabilized Li-S batteries with anti-solvent-tamed quasi-solid-state reaction[J]. Joule, 2023, 7(9): 2074-2091. |
68 | MA T, NI Y X, LI D T, et al. Reversible solid-solid conversion of sulfurized polyacrylonitrile cathodes in lithium-sulfur batteries by weakly solvating ether electrolytes[J]. Angewandte Chemie International Edition, 2023, 62(43): doi: 10.1002/anie.202310761. |
69 | GAO R H, ZHANG M T, HAN Z Y, et al. Unraveling the coupling effect between cathode and anode toward practical lithium-sulfur batteries[J]. Advanced Materials, 2023: doi: 10.1002/adma. 202303610. |
70 | CHENG Q A, CHEN Z X, LI X Y, et al. Deciphering the degradation mechanism of high-rate and high-energy-density lithium-sulfur pouch cells[J]. Advanced Energy Materials, 2023, 13(42): doi: 10.1002/aenm.202301770. |
71 | NAGLER F, FLEGLER A, GIFFIN G A. Impact of electrode architecture on electrochemical performance of aqueous processed, high-loaded lithium-ion battery cathodes[J]. Batteries & Supercaps, 2023, 6(7): doi: 10.1002/batt.202300063. |
72 | CHAUHAN A, NIRSCHL H. Numerical investigation of conductivity additive dispersion in high-power and high-energy NMC-based lithium-ion battery cathodes: Application-based guidelines[J]. Energy Technology, 2023, 11(8): doi: 10.1002/ente.202300281. |
73 | PACE G T, LE M L, CLÉMENT R J, et al. A coacervate-based mixed-conducting binder for high-power, high-energy batteries[J]. ACS Energy Letters, 2023, 8(6): 2781-2788. |
74 | KIM J H, LEE K M, KIM J W, et al. Regulating electrostatic phenomena by cationic polymer binder for scalable high-areal-capacity Li battery electrodes[J]. Nature Communications, 2023, 14: 5721. |
75 | YONAGA A, KAWAUCHI S, MORI Y, et al. Effects of dry powder mixing on electrochemical performance of lithium-ion battery electrode using solvent-free dry forming process[J]. Journal of Power Sources, 2023, 581: 233466. |
76 | JORALEECHANCHAI N, SANGSANIT T, HOMLAMAI K, et al. Insight into the effect of thick graphite electrodes towards high-performance cylindrical Ni-rich NCA90 Li-ion batteries[J]. Journal of Energy Chemistry, 2023, 87: 322-333. |
77 | WIEGMANN E, CAVERS H, DIENER A, et al. Semi-dry extrusion-based processing for graphite anodes: Morphological insights and electrochemical performance[J]. Energy Technology, 2023, 11(9): doi: 10.1002/ente.202300341. |
78 | CHANG Q A, FU X L, GAO J C, et al. Advanced multilayered electrode with planar building blocks structure for high-performance lithium-ion storage[J]. Advanced Materials, 2023, 35(47): doi: 10.1002/adma.202305317. |
79 | ZHENG G L, YAN T, HONG Y F, et al. A non-Newtonian fluid quasi-solid electrolyte designed for long life and high safety Li-O2 batteries[J]. Nature Communications, 2023, 14: 2268. |
80 | CHIEN Y C, LIU H D, MENON A S, et al. Rapid determination of solid-state diffusion coefficients in Li-based batteries via intermittent current interruption method[J]. Nature Communications, 2023, 14: 2289. |
81 | ZHAO H B, DENG H D, COHEN A E, et al. Learning heterogeneous reaction kinetics from X-ray videos pixel by pixel[J]. Nature, 2023, 621(7978): 289-294. |
82 | PANDYA R, VALZANIA L, DORCHIES F, et al. Three-dimensional operando optical imaging of particle and electrolyte heterogeneities inside Li-ion batteries[J]. Nature Nanotechnology, 2023, 18(10): 1185-1194. |
83 | BERG C, MORASCH R, GRAF M, et al. Comparison of silicon and graphite anodes: Temperature-dependence of impedance characteristics and rate performance[J]. Journal of the Electrochemical Society, 2023, 170(3): 030534. |
84 | TAO M M, CHEN X X, LIN H X, et al. Clarifying the temperature-dependent lithium deposition/stripping process and the evolution of inactive Li in lithium metal batteries[J]. ACS Nano, 2023, 17(23): 24104-24114. |
85 | LIU F, LU W Q, HUANG J Q, et al. Detangling electrolyte chemical dynamics in lithium sulfur batteries by operando monitoring with optical resonance combs[J]. Nature Communications, 2023, 14: 7350. |
86 | CHENG C X, ZHOU Y D, XU Y B, et al. Dynamic molecular investigation of the solid-electrolyte interphase of an anode-free lithium metal battery using in situ liquid SIMS and cryo-TEM[J]. Nano Letters, 2023, 23(18): 8385-8391. |
1 | JOBST N M, PAUL N, BERAN P, et al. Dynamic structure evolution of extensively delithiated high voltage spinel Li1+ xNi0.5Mn1.5O4 x<1.5[J]. Journal of the American Chemical Society, 2023, 145(8): 4450-4461. |
2 | MARTENS I, VOSTROV N, MIROLO M, et al. Defects and nanostrain gradients control phase transition mechanisms in single crystal high-voltage lithium spinel[J]. Nature Communications, 2023, 14: 6975. |
3 | GAO C, LIU H Y, ZHANG J, et al. Simplified crystal grain boundary engineering of solid electrolyte-infused LiNi0.5Mn1.5O4 cathodes for high cycling stability lithium-ion batteries[J]. Journal of Power Sources, 2023, 582: 233434. |
4 | CHENG Y, ZHANG X Z, LENG Q Y, et al. Boosting electrochemical performance of Co-free Ni-rich cathodes by combination of Al and high-valence elements[J]. Chemical Engineering Journal, 2023, 474: 145869. |
5 | WANG Y Y, LIANG Z M, LIU Z C, et al. Synergy of epitaxial layer and bulk doping enables structural rigidity of cobalt-free ultrahigh-nickel oxide cathode for lithium-ion batteries[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202308152. |
6 | TAN X H, CHEN Z F, LIU T C, et al. Imitating architectural mortise-tenon structure for stable Ni-rich layered cathodes[J]. Advanced Materials, 2023, 35(32): e2301096. |
7 | LUO D, ZHU H, XIA Y, et al. A Li-rich layered oxide cathode with negligible voltage decay[J]. Nature Energy, 2023, 8(10): 1078-1087. |
8 | HOU Y K, LI C X, REN D S, et al. Enabling electrochemical-mechanical robustness of ultra-high Ni cathode via self-supported primary-grain-alignment strategy[J]. Advanced Science, 2023: doi: 10.1002/advs.202306347. |
9 | SONG S H, KIM H S, KIM K S, et al. Toward a nanoscale-defect-free Ni-rich layered oxide cathode through regulated pore evolution for long-lifespan Li rechargeable batteries[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202306654. |
10 | LI B, ZHUO Z Q, ZHANG L T, et al. Decoupling the roles of Ni and Co in anionic redox activity of Li-rich NMC cathodes[J]. Nature Materials, 2023, 22(11): 1370-1379. |
11 | ZHAO H S, LIANG K, WANG S J, et al. A stress self-adaptive silicon/carbon "ordered structures" to suppress the electro-chemo-mechanical failure: Piezo-electrochemistry and piezo-ionic dynamics[J]. Advanced Science, 2023, 10(29): doi: 10.1002/advs.202303696. |
12 | YAO K, LI N, LI N, et al. Tin metal improves the lithiation kinetics of high-capacity silicon anodes[J]. Chemistry of Materials, 2023, 35(6): 2281-2288. |
87 | GARRICK T R, MIAO Y, MACCIOMEI E, et al. Quantifying aging-induced irreversible volume change of porous electrodes[J]. Journal of the Electrochemical Society, 2023, 170(10): 100513. |
88 | WANG X Q, SONG Y Z, CUI H, et al. Insight into the electrochemical behaviors of NCM811|SiO-Gr pouch battery through thickness variation[J]. Energy & Environmental Materials, 2023, 6(5): doi: 10.1002/eem2.12401. |
89 | HAWKINS B E, ASARE H, CHEN B, et al. Elucidating failure mechanisms in Li-ion batteries operating at 100 ℃[J]. Journal of the Electrochemical Society, 2023, 170(10): 100522. |
90 | STAVOLA A M, SUN X, GUIDA D P, et al. Lithiation gradients and tortuosity factors in thick NMC111-argyrodite solid-state cathodes[J]. ACS Energy Letters, 2023, 8(2): 1273-1280. |
91 | MALAKI M, HAUST J, BEAUPAIN J P, et al. Probing the interface evolution in co-sintered all-phosphate cathode-solid electrolyte composites[J]. Advanced Materials Interfaces, 2023, 10(35): doi: 10.1002/admi.202300513. |
92 | AKTEKIN B, RIEGGER L M, OTTO S K, et al. SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis[J]. Nature Communications, 2023, 14: 6946. |
93 | LEWIS J A, SANDOVAL S E, LIU Y, et al. Accelerated short circuiting in anode-free solid-state batteries driven by local lithium depletion[J]. Advanced Energy Materials, 2023, 13(12): doi: 10.1002/aenm.202204186. |
94 | LANDRY A K, BAYZOU R, BENAYAD A, et al. Unveiling the origins of high ionic conductivity in lithium phosphorus oxynitride amorphous electrolytes[J]. Chemistry of Materials, 2023, 35(21): 9313-9324. |
95 | ORUE MENDIZABAL A, CHEDDADI M, TRON A, et al. Understanding interfaces at the positive and negative electrodes on sulfide-based solid-state batteries[J]. ACS Applied Energy Materials, 2023, 6(21): 11030-11042. |
96 | SHIN H J, KIM J T, KIM A Y, et al. New consideration of degradation accelerating of all-solid-state batteries under a low-pressure condition [J]. Advanced Energy Materials, 2023, 13(40): doi: 10.1002/aenm.202301220. |
97 | MEI W X, LIU Z, WANG C D, et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14: 5251. |
98 | MULPURI S K, SAH B, KUMAR P. Unraveling capacity fading in lithium-ion batteries using advanced cyclic tests: A real-world approach[J]. iScience, 2023, 26(10): 107770. |
13 | WANG F, WANG Y C, LIU Z D, et al. Carbon-binder design for robust electrode-electrolyte interfaces to enable high-performance microsized-silicon anode for batteries[J]. Advanced Energy Materials, 2023, 13(40): doi: 10.1002/aenm.202301456. |
14 | CHEN Y X, CHENG Y W, HUANG J H, et al. Waterbed inspired stress relaxation strategies of patterned silicon anodes for fast-charging and longevity of lithium microbatteries[J]. Journal of Materials Chemistry A, 2023, 11(39): 21211-21221. |
15 | KO S, HAN X A, SHIMADA T, et al. Electrolyte design for lithium-ion batteries with a cobalt-free cathode and silicon oxide anode[J]. Nature Sustainability, 2023, 6(12): 1705-1714. |
16 | YU S C, WANG S, MIAO Q S, et al. Composite lithium metal structure to mitigate pulverization and enable long-life batteries[J]. Advanced Energy Materials, 2023, 13(40): doi: 10.1002/aenm. 202302400. |
17 | ZHU X X, CHENG H W, LYU S B, et al. High-energy-heavy-ion engineering low-tortuosity and high-porosity 3D metallic electrodes for long-life lithium anodes[J]. Advanced Energy Materials, 2023, 13(24): doi: 10.1002/aenm.202300129. |
18 | LIU Y H, LI Y F, DU Z Z, et al. Integrated gradient Cu current collector enables bottom-up Li growth for Li metal anodes: Role of interfacial structure[J]. Advanced Science, 2023, 10(23): doi: 10.1002/advs.202301288. |
19 | LI W H, QUIRK J A, LI M S, et al. Precise tailoring of lithium-ion transport for ultra-long-cycling dendrite-free all-solid-state lithium metal batteries[J]. Advanced Materials, 2023: e2302647. |
20 | LI W H, LI M S, CHIEN P H, et al. Lithium-compatible and air-stable vacancy-rich Li9N2Cl3 for high-areal capacity, long-cycling all-solid-state lithium metal batteries[J]. Science Advances, 2023, 9(42): eadh4626. |
21 | LI X N, XU Y, ZHAO C T, et al. The universal super cation-conductivity in multiple-cation mixed chloride solid-state electrolytes[J]. Angewandte Chemie International Edition, 2023, 62(48): doi: 10.1002/anie.202306433. |
22 | LIU H, ZHU Q S, LIANG Y H, et al. Versatility of Sb-doping enabling argyrodite electrolyte with superior moisture stability and Li metal compatibility towards practical all-solid-state Li metal batteries[J]. Chemical Engineering Journal, 2023, 462: 142183. |
23 | SANG J W, PAN K C, TANG B, et al. One stone, three birds: An air and interface stable argyrodite solid electrolyte with multifunctional nanoshells[J]. Advanced Science, 2023, 10(32): e2304117. |
24 | LU P S, XIA Y, SUN G C, et al. Realizing long-cycling all-solid-state Li-In||TiS2 batteries using Li6+ xMxAs1- xS5I (M=Si, Sn) sulfide solid electrolytes[J]. Nature Communications, 2023, 14: 4077. |
25 | GAO C W, ZHANG J H, HE C M, et al. Unveiling the growth mechanism of the interphase between lithium metal and Li2S-P2S5-B2S3 solid-state electrolytes[J]. Advanced Energy Materials, 2023, 13(22): doi: 10.1002/aenm.202204386. |
26 | GAUTAM A, AL-KUTUBI H, FAMPRIKIS T, et al. Exploring the relationship between halide substitution, structural disorder, and lithium distribution in lithium argyrodites (Li6- xPS5- xBr1+ x)[J]. Chemistry of Materials: a Publication of the American Chemical Society, 2023, 35(19): 8081-8091. |
27 | GE Z Y, CHEN N S, WANG R, et al. Constructing dendrite suppressing mixed sulfide solid electrolyte for high-rate lithium metal batteries[J]. Chemical Engineering Journal, 2023, 467: 143409. |
28 | LI S, YANG S J, LIU G X, et al. A dynamically stable mixed conducting interphase for all-solid-state lithium metal batteries[J]. Advanced Materials, 2023: e2307768. |
29 | YANG J Y, CAO Z, CHEN Y W, et al. Dry-processable polymer electrolytes for solid manufactured batteries[J]. ACS Nano, 2023, 17(20): 19903-19913. |
30 | PRAKASH P, FALL B, AGUIRRE J, et al. A soft co-crystalline solid electrolyte for lithium-ion batteries[J]. Nature Materials, 2023, 22(5): 627-635. |
31 | ACCARDO G, ORUE A, CHATZOGIANNAKIS D, et al. Fast and low-temperature densification of highly conductive Li7La3Zr2O12 ceramic electrolytes for solid-state batteries[J]. Journal of Power Sources, 2023, 585: 233632. |
32 | KIM S, LEE H, PARK J, et al. Lithium-preserved sintering method for perovskite-based solid electrolyte thin films via flash light sintering for all-solid-state lithium-ion batteries[J]. Journal of Materials Chemistry A, 2023, 11(40): 21586-21594. |
33 | REN Z Q, QIU H Y, FAN C, et al. Delicately designed cyano-siloxane as multifunctional additive enabling high voltage LiNi0.9Co0.05Mn0.05O2/graphite full cell with long cycle life at 50 ℃[J]. Advanced Functional Materials, 2023, 33(36): doi: 10.1002/adfm.202302411. |
34 | WANG Z S, ZHU C L, LIU J D, et al. Catalytically induced robust inorganic-rich cathode electrolyte interphase for 4.5V Li||NCM622 batteries[J]. Advanced Functional Materials, 2023, 33(19): doi: 10.1002/adfm.202212150. |
35 | KUBOT M, BALKE L, SCHOLZ J, et al. High-voltage instability of vinylene carbonate (VC): Impact of formed poly-VC on interphases and toxicity[J]. Advanced Science, 2023: e2305282. |
36 | TIAN M Y, JIN Z, SONG Z Y, et al. Domino reactions enabling sulfur-mediated gradient interphases for high-energy lithium batteries[J]. Journal of the American Chemical Society, 2023, 145(39): 21600-21611. |
37 | CHU F L, LIU J M, GUAN Z Q, et al. A non-expendable leveler as electrolyte additive enabling homogenous lithium deposition[J]. Advanced Materials, 2023, 35(49): doi: 10.1002/adma.202305470. |
38 | ZHANG G Z, CHANG J, WANG L G, et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries[J]. Nature Communications, 2023, 14: 1081. |
39 | CASTILLO J, SORIA-FERNÁNDEZ A, RODRIGUEZ-PEÑA S, et al. Graphene-based sulfur cathodes and dual salt-based sparingly solvating electrolytes: A perfect marriage for high performing, safe, and long cycle life lithium-sulfur prototype batteries[J]. Advanced Energy Materials, 2023: doi: 10.1002/aenm.202302378. |
40 | LI Z, RAO H, ATWI R, et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries[J]. Nature Communications, 2023, 14: 868. |
41 | YANG Y Z, YANG Z, LI Z L, et al. Rational electrolyte design for interfacial chemistry modulation to enable long-term cycling Si anode[J]. Advanced Energy Materials, 2023, 13(41): doi: 10.1002/aenm.202302068. |
42 | LI S Y, LI J N, WANG P, et al. Interface engineering regulation by improving self-decomposition of lithium salt-type additive using ultrasound[J]. Advanced Functional Materials, 2023: doi: 10.1002/adfm.202307180. |
43 | JIA H, KIM J M, GAO P Y, et al. A systematic study on the effects of solvating solvents and additives in localized high-concentration electrolytes over electrochemical performance of lithium-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(17): doi: 10.1002/anie.202218005. |
44 | BONG W S K, SHIOTA A, MIWA T, et al. Effect of thickness and uniformity of LiNbO3-coated layer on LiNi0.5Co0.2Mn0.3O2 cathode material on enhancement of cycle performance of full-cell sulfide-based all-solid-state batteries[J]. Journal of Power Sources, 2023, 577: 233259. |
45 | WANG Y, WU D X, CHEN P, et al. Dual‐function modifications for high‐stability Li‐rich cathode toward sulfide all‐solid‐state batteries[J]. Advanced Functional Materials, 2023, doi: 10.1002/adfm. 202309822. |
46 | HUANG Y Y, ZHOU L D, LI C, et al. Waxing bare high-voltage cathode surfaces to enable sulfide solid-state batteries[J]. ACS Energy Letters, 2023, 8(11): 4949-4956. |
47 | DUAN H, WANG C H, YU R Z, et al. In situ constructed 3D lithium anodes for long-cycling all-solid-state batteries[J]. Advanced Energy Materials, 2023, 13(24): doi: 10.1002/aenm.202300815. |
48 | WAN H L, WANG Z Y, ZHANG W R, et al. Interface design for all-solid-state lithium batteries[J]. Nature, 2023, 623(7988): 739-744. |
49 | ZHAO G Q, LUO C W, WU B, et al. Low-temperature in situ lithiation construction of a lithiophilic particle-selective interlayer for solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2023, 15(43): 50508-50521. |
50 | ZHANG B Y, WU M S, SUN B Z, et al. Bilayer halide electrolyte design enabling excellent interface stability between a Li-metal anode and a halide solid electrolyte[J]. The Journal of Physical Chemistry C, 2023, 127(43): 21440-21448. |
99 | GU Z C, SONG D X, LUO S T, et al. Insights into the anode‐initiated and grain boundary‐initiated mechanisms for dendrite formation in all‐solid‐state lithium metal batteries[J]. Advanced Energy Materials, 2023, doi: 10.1002/aenm.202302945. |
100 | GUPTA S, YANG X C, CEDER G. What dictates soft clay-like lithium superionic conductor formation from rigid salts mixture[J]. Nature Communications, 2023, 14: 6884. |
[1] | 李臣, 张会林, 张建平. 基于核函数和超参数优化的退役锂电池健康状态估计[J]. 储能科学与技术, 2024, 13(6): 2010-2021. |
[2] | 冯仁超, 董宇, 朱新宇, 刘偲, 陈胜, 李达, 郭若禹, 王斌, 王炯辉, 李宁, 苏岳锋, 吴锋. 钠离子电池氧化石墨基负极研究进展[J]. 储能科学与技术, 2024, 13(6): 1835-1848. |
[3] | 陈艺, 秦琪, 赵龙, 陈子坤, 王安宁. 新型储能技术的中国专利布局分析[J]. 储能科学与技术, 2024, 13(6): 2089-2098. |
[4] | 甄箫斐, 王贝贝, 张小虎, 孙一铭, 曹文炅, 董缇. 锂电池储能系统热失控气体生成及扩散规律研究[J]. 储能科学与技术, 2024, 13(6): 1986-1994. |
[5] | 刘宝泉, 曹小雨. 锂电池热失控早期典型气体精准检测方法[J]. 储能科学与技术, 2024, 13(6): 1995-2009. |
[6] | 时海欧. 基于深度学习的锂电池故障分析及应用[J]. 储能科学与技术, 2024, 13(6): 2054-2056. |
[7] | 冯娜娜, 杨明, 惠周利, 王瑞洁, 宁弘扬. 基于蚁狮优化高斯过程回归的锂电池剩余使用寿命预测[J]. 储能科学与技术, 2024, 13(5): 1643-1652. |
[8] | 李万瑞, 李文俊, 王小青, 路胜利, 徐喜连. 锌离子电池用锰/钒基氧化物异质结构正极的研究进展[J]. 储能科学与技术, 2024, 13(5): 1496-1515. |
[9] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
[10] | 姜媛媛, 屠芳芳, 张芳平, 王盈来, 蔡佳文, 杨东辉, 李艳红, 相佳媛, 夏新辉, 傅继澎. 高性能磷酸铁锂电池补锂技术及机制[J]. 储能科学与技术, 2024, 13(5): 1435-1442. |
[11] | 谢欣兵, 杨凯悦, 杜晓钟. 锂电池极片辊压过程力学行为与结构[J]. 储能科学与技术, 2024, 13(5): 1699-1706. |
[12] | 朱璟, 郝峻丰, 孙蔷馥, 张新新, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.2.1—2024.3.31)[J]. 储能科学与技术, 2024, 13(5): 1398-1416. |
[13] | 汤元会, 袁博兴, 李杰, 张云龙. 圆柱形锂离子电池在针刺条件下的安全性研究[J]. 储能科学与技术, 2024, 13(4): 1326-1334. |
[14] | 王瑞梓, 刘训良, 豆瑞锋, 周文宁, 方娟. 三元软包锂离子电池放电过程扩散诱导应力与热应力对比研究[J]. 储能科学与技术, 2024, 13(4): 1128-1141. |
[15] | 肖威, 吴晓文, 孙静玲, 陈炜. 储能锂电池模组温度场数值计算与散热系统优化设计[J]. 储能科学与技术, 2024, 13(4): 1159-1166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||