储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3319-3333.doi: 10.19799/j.cnki.2095-4239.2024.0248
收稿日期:
2024-03-20
修回日期:
2024-04-08
出版日期:
2024-10-28
发布日期:
2024-10-30
通讯作者:
陈剑
E-mail:maxf@dicp.ac.cn;chenjian@dicp.ac.cn
作者简介:
马晓锋(1998—),男,硕士,研究方向为质子电池负极材料,E-mail:maxf@dicp.ac.cn;
基金资助:
Xiaofeng MA1,2(), Qinjun SHAO1, Jian CHEN1()
Received:
2024-03-20
Revised:
2024-04-08
Online:
2024-10-28
Published:
2024-10-30
Contact:
Jian CHEN
E-mail:maxf@dicp.ac.cn;chenjian@dicp.ac.cn
摘要:
质子带有一个正电荷,具有最小的离子半径和最轻的质量;并且氢元素在地球上的丰度较高,可充电的质子电池有望成为下一代新型储能二次电池。目前,常被用作质子电池负极材料的有α-MoO3、WO3、TiO2和MXenes等,尚存在放电比容量低、倍率性能差等问题。α-MoO3是一种层内由[MoO6]八面体双亚层组成、层与层之间通过范德华力相连接的层状晶体化合物,3电子反应对应较高的理论比容量558 mAh/g,且嵌脱质子的电极电势较低,是最有应用前景的质子电池负极材料之一。但是,在水系电解液中,当电池放电时,水合质子在α-MoO3表面脱溶剂化可导致材料的晶格扭曲和坍塌,造成材料的可逆容量衰减。本工作首次合成了W掺杂的α-MoO3材料。XRD和RAMAN结果显示,掺杂的W进入化合物的Mo位点形成了键能更高的W—O键,并增强了层间的Mo=O键。并且,W6+的离子半径为0.60 Å,较Mo6+的0.59 Å更大,W掺杂材料的层间距从未掺杂时的13.84 Å增大到掺杂后的13.87 Å。电化学研究结果显示,质子嵌入W掺杂的α-MoO3的反应动力学得到明显提升,电极反应从由质子在材料中的固相扩散传质控制转变为由电极表面的转化反应控制为主。α-MoO3和W0.035Mo0.965O3材料分别以5 C(1 A/g)倍率进行充放电,可逆比容量分别为202.4 mAh/g和189.2 mAh/g。充放电循环600圈后,W0.035Mo0.965O3的容量保持率为83.0%,而α-MoO3的仅为69.6%。当放电倍率提高至125 C (25 A/g)时,W0.035Mo0.965O3材料仍表现出144.2 mAh/g的放电比容量,而α-MoO3的放电比容量仅为90.7 mAh/g。最后,本工作以MnO2为正极、W0.035Mo0.965O3为负极、玻璃纤维纸为隔膜、2 mol/L H2SO4 + 1 mol/L MnSO4为电解液组装了全电池。该电池以15 C倍率(3 A/g)放电的可逆比容量为177.0 mAh/g,循环400圈后的容量保持率为83.8%。研究结果表明,W掺杂有效提高了α-MoO3材料的稳定性和倍率性能。
中图分类号:
马晓锋, 邵钦君, 陈剑. 质子电池负极材料W掺杂α-MoO3 的制备和研究[J]. 储能科学与技术, 2024, 13(10): 3319-3333.
Xiaofeng MA, Qinjun SHAO, Jian CHEN. Preparation and research of W-doped α-MoO3 as anode materials for proton battery[J]. Energy Storage Science and Technology, 2024, 13(10): 3319-3333.
1 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. DOI: 10.1021/cr100290v. |
2 | JI X L. A paradigm of storage batteries[J]. Energy & Environmental Science, 2019, 12(11): 3203-3224. DOI: 10.1039/C9EE02356A. |
3 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. DOI: 10.1126/science.1212741. |
4 | POSADA J O G, RENNIE A J R, VILLAR S P, et al. Aqueous batteries as grid scale energy storage solutions[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 1174-1182. DOI: 10.1016/j.rser.2016.02.024. |
5 | CHAO D L, ZHOU W H, XIE F X, et al. Roadmap for advanced aqueous batteries: From design of materials to applications[J]. Science Advances, 2020, 6(21): eaba4098. DOI: 10.1126/sciadv.aba4098. |
6 | AHN H, KIM D, LEE M J, et al. Challenges and possibilities for aqueous battery systems[J]. Communications Materials, 2023, 4: 37. DOI: 10.1038/s43246-023-00367-2. |
7 | JIANG L W, LU Y X, ZHAO C L, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019, 4: 495-503. DOI: 10.1038/s41560-019-0388-0. |
8 | YUE J M, LIN L D, JIANG L W, et al. Interface concentrated-confinement suppressing cathode dissolution in water-in-salt electrolyte[J]. Advanced Energy Materials, 2020, 10(36): 2000665. DOI: 10.1002/aenm.202000665. |
9 | KIM H, HONG J, PARK K Y, et al. Aqueous rechargeable Li and Na ion batteries[J]. Chemical Reviews, 2014, 114(23): 11788-11827. DOI: 10.1021/cr500232y. |
10 | GAO H, TANG K K, XIAO J, et al. Recent advances in "water in salt" electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+, K+) batteries[J]. Journal of Energy Chemistry, 2022, 69: 84-99. DOI: 10.1016/j.jechem.2021.12.025. |
11 | HUANG J H, GUO Z W, MA Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019, 3(1): 1800272. DOI: 10.1002/smtd.201800272. |
12 | TANG Y C, LI X J, LV H M, et al. High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation[J]. Angewandte Chemie International Edition, 2021, 60(10): 5443-5452. DOI: 10.1002/anie.202013315. |
13 | BALLAND V, MATEOS M, SINGH A, et al. The role of Al3+-based aqueous electrolytes in the charge storage mechanism of MnOx cathodes[J]. Small, 2021, 17(23): DOI: 10.1002/smll.202101515. |
14 | NIAN Q S, SUN T J, LIU S, et al. Issues and opportunities on low-temperature aqueous batteries[J]. Chemical Engineering Journal, 2021, 423: 130253. DOI: 10.1016/j.cej.2021.130253. |
15 | WU Y Z, ZHANG K, CHEN S B, et al. Proton inserted manganese dioxides as a reversible cathode for aqueous Zn-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(1): 319-327. DOI: 10.1021/acsaem.9b01554. |
16 | TIAN Y P, JU M M, BIN X Q, et al. Long cycle life aqueous rechargeable battery Zn/vanadium hexacyanoferrate with H+/Zn2+ coinsertion for high capacity[J]. Chemical Engineering Journal, 2022, 430: 132864. DOI: 10.1016/j.cej.2021.132864. |
17 | HUANG M, WANG X P, WANG J J, et al. Proton/Mg2+ co-insertion chemistry in aqueous Mg-ion batteries: From the interface to the inner[J]. Angewandte Chemie International Edition, 2023, 62(37): e202308961. DOI: 10.1002/anie.202308961. |
18 | CHEN Y, FAN K, GAO Y B, et al. Challenges and perspectives of organic multivalent metal-ion batteries[J]. Advanced Materials, 2022, 34(52): e2200662. DOI: 10.1002/adma.202200662. |
19 | SUN W, WANG F, HOU S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J]. Journal of the American Chemical Society, 2017, 139(29): 9775-9778. DOI: 10.1021/jacs.7b04471. |
20 | HUANG C X, ZHANG W, ZHENG W T. Proton batteries shape the next energy storage[J]. Energy Storage Materials, 2023, 61: 102913. DOI: 10.1016/j.ensm.2023.102913. |
21 | SHIMIZU G K H, TAYLOR J M, KIM S. Proton conduction with metal-organic frameworks[J]. Science, 2013, 341(6144): 354-355. DOI: 10.1126/science.1239872. |
22 | WU X Y, HONG J J, SHIN W, et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries[J]. Nature Energy, 2019, 4: 123-130. DOI: 10.1038/s41560-018-0309-7. |
23 | DAI Y J, ZHANG J Z, YAN X R, et al. Investigating the electrochemical performance of MnO2 polymorphs as cathode materials for aqueous proton batteries[J]. Chemical Engineering Journal, 2023, 471: 144158. DOI: 10.1016/j.cej.2023.144158. |
24 | XU Y K, WU X Y, JI X L. The renaissance of proton batteries[J]. Small Structures, 2021, 2(5): 2000113. DOI: 10.1002/sstr.202000113. |
25 | YANG B B, QIN T, DU Y Y, et al. Rocking-chair proton battery based on a low-cost "water in salt" electrolyte[J]. Chemical Communications, 2022, 58(10): 1550-1553. DOI: 10.1039/D1CC06325A. |
26 | TOMAI T, MITANI S, KOMATSU D, et al. Metal-free aqueous redox capacitor via proton rocking-chair system in an organic-based couple[J]. Scientific Reports, 2014, 4: 3591. DOI: 10.1038/srep03591. |
27 | MITCHELL J B, LO W C, GENC A, et al. Transition from battery to pseudocapacitor behavior via structural water in tungsten oxide[J]. Chemistry of Materials, 2017, 29(9): 3928-3937. DOI: 10.1021/acs.chemmater.6b05485. |
28 | GENG C, SUN T L, WANG Z C, et al. Surface-induced desolvation of hydronium ion enables anatase TiO2 as an efficient anode for proton batteries[J]. Nano Letters, 2021, 21(16): 7021-7029. DOI: 10.1021/acs.nanolett.1c02421. |
29 | GUO H C, GOONETILLEKE D, SHARMA N, et al. Two-phase electrochemical proton transport and storage in α-MoO3 for proton batteries[J]. Cell Reports Physical Science, 2020, 1(10): 100225. DOI: 10.1016/j.xcrp.2020.100225. |
30 | LUKATSKAYA M R, KOTA S, LIN Z F, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2(8): 17105. DOI: 10.1038/nenergy.2017.105. |
31 | WANG X F, BOMMIER C, JIAN Z L, et al. Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode[J]. Angewandte Chemie International Edition, 2017, 56(11): 2909-2913. DOI: 10.1002/anie.201700148. |
32 | JIANG H, SHIN W, MA L, et al. A high-rate aqueous proton battery delivering power below -78 ℃ via an unfrozen phosphoric acid[J]. Advanced Energy Materials, 2020, 10(28): 2000968. DOI: 10.1002/aenm.202000968. |
33 | ZHAO G, YAN X, DAI Y, et al. Searching high-potential dihydroxynaphthalene cathode for rocking-chair all-organic aqueous proton batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2024, 20(4): e2306071. DOI: 10.1002/smll.202306071. |
34 | SUN T J, DU H H, ZHENG S B, et al. Bipolar organic polymer for high performance symmetric aqueous proton battery[J]. Small Methods, 2021, 5(8): e2100367. DOI: 10.1002/smtd.202100367. |
35 | CHITHAMBARARAJ A, RAJESWARI YOGAMALAR N, BOSE A C. Hydrothermally synthesized h-MoO3 and α-MoO3 nanocrystals: New findings on crystal-structure-dependent charge transport[J]. Crystal Growth & Design, 2016, 16(4): 1984-1995. DOI: 10.1021/acs.cgd.5b01571. |
36 | ZHOU L, YANG L C, YUAN P, et al. α-MoO3 nanobelts: A high performance cathode material for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(49): 21868-21872. DOI: 10.1021/jp108778v. |
37 | MA Z H, SHI X M, NISHIMURA S I, et al. Anhydrous fast proton transport boosted by the hydrogen bond network in a dense oxide-ion array of α-MoO3[J]. Advanced Materials, 2022, 34(34): 2203335. DOI: 10.1002/adma.202203335. |
38 | WU S C, CHEN J B, SU Z, et al. Molecular crowding electrolytes for stable proton batteries[J]. Small, 2022, 18(45): e2202992. DOI: 10.1002/smll.202202992. |
39 | WANG C G, ZHAO S S, SONG X X, et al. Suppressed dissolution and enhanced desolvation in core-shell MoO3@TiO2 nanorods as a high-rate and long-life anode material for proton batteries[J]. Advanced Energy Materials, 2022, 12(19): 2200157. DOI: 10.1002/aenm.202200157. |
40 | SU Z, CHEN J B, STANSBY J, et al. Hydrogen-bond disrupting electrolytes for fast and stable proton batteries[J]. Small, 2022, 18(22): DOI: 10.1002/smll.202201449. |
41 | YIN C, WAN L Y, QIU B, et al. Boosting energy efficiency of Li-rich layered oxide cathodes by tuning oxygen redox kinetics and reversibility[J]. Energy Storage Materials, 2021, 35: 388-399. DOI: 10.1016/j.ensm.2020.11.034. |
42 | CHOI J, LEE S Y, YOON S, et al. The role of Zr doping in stabilizing Li[Ni0.6Co0.2Mn0.2]O2 as a cathode material for lithium-ion batteries[J]. ChemSusChem, 2019, 12(11): 2439-2446. DOI: 10.1002/cssc.201900500. |
43 | MITORAJ M P, MICHALAK A. On the asymmetry in molybdenum-oxygen bonding in the MoO3 structure: ETS-NOCV analysis[J]. Structural Chemistry, 2012, 23(5): 1369-1375. DOI: 10.1007/s11224-012-0056-5. |
44 | ZHAI H J, KIRAN B, CUI L F, et al. Electronic structure and chemical bonding in MOn- and MOn clusters (M = Mo, W; n = 3-5): A photoelectron spectroscopy and ab initio study[J]. Journal of the American Chemical Society, 2004, 126(49): 16134-16141. DOI: 10.1021/ja046536s. |
45 | SU Z, REN W H, GUO H C, et al. Ultrahigh areal capacity hydrogen-Ion batteries with MoO3 loading over 90 mg cm–2[J]. Advanced Functional Materials, 2020, 30(46): 2005477. DOI: 10.1002/adfm.202005477. |
46 | HUANG S, OUYANG T, ZHENG B F, et al. Enhanced photoelectrocatalytic activities for CH3OH-to-HCHO conversion on Fe2O3/MoO3: Fe-O-Mo covalency dominates the intrinsic activity[J]. Angewandte Chemie International Edition, 2021, 60(17): 9546-9552. DOI: 10.1002/anie.202101058. |
47 | GANTA D, SINHA S, HAASCH R T. 2-D material molybdenum disulfide analyzed by XPS[J]. Surface Science Spectra, 2014, 21(1): 19-27. DOI: 10.1116/11.20140401. |
48 | WEN M Q, CHEN X X, ZHENG Z B, et al. In-plane anisotropic Raman spectroscopy of van der waals α-MoO3[J]. The Journal of Physical Chemistry C, 2021, 125(1): 765-773. DOI: 10.1021/acs.jpcc.0c09178. |
49 | MESTL G, RUIZ P, DELMON B, et al. Oxygen-exchange properties of MoO3: An in situ Raman spectroscopy study[J]. The Journal of Physical Chemistry, 1994, 98(44): 11269-11275. DOI: 10.1021/j100095a007. |
50 | HU X K, QIAN Y T, SONG Z T, et al. Comparative study on MoO3 and HxMoO3 nanobelts: Structure and electric transport[J]. Chemistry of Materials, 2008, 20(4): 1527-1533. DOI: 10.1021/cm702942y. |
51 | EDA K, SUKEJIMA A, SOTANI N. A new synthetic route for mixed-valence compounds: Leaching treatments of hydrogen molybdenum bronze[J]. Journal of Solid State Chemistry, 2001, 159(1): 51-58. DOI: 10.1006/jssc.2001.9129. |
52 | GUO H C, WAN L Y, TANG J Q, et al. Stable colloid-in-acid electrolytes for long life proton batteries[J]. Nano Energy, 2022, 102: 107642. DOI: 10.1016/j.nanoen.2022.107642. |
[1] | 张新新, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 周洪, 黄学杰. 锂电池百篇论文点评(2024.06.01—2024.07.31)[J]. 储能科学与技术, 2024, 13(9): 3226-3244. |
[2] | 孔妍妍, 张熊, 安亚斌, 李晨, 孙现众, 王凯, 马衍伟. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678. |
[3] | 王志勇, 蔡君瑶, 佘英奇, 钟树林, 潘康华. 氮杂环导电高分子改性锂离子电池石墨负极材料[J]. 储能科学与技术, 2024, 13(8): 2511-2518. |
[4] | 姚远, 宗若奇, 盖建丽. 钠离子电池锑基及铋基金属负极材料研究进展[J]. 储能科学与技术, 2024, 13(8): 2649-2664. |
[5] | 范利君, 吴保周, 陈珂君. 不同形貌FeS2 的可控制备及储钠特性研究[J]. 储能科学与技术, 2024, 13(8): 2541-2549. |
[6] | 马国政, 陈金伟, 熊兴宇, 杨振忠, 周钢, 胡仁宗. SnSb-Li4Ti5O12 复合负极材料低温高倍率储锂特性研究[J]. 储能科学与技术, 2024, 13(7): 2107-2115. |
[7] | 郝峻丰, 朱璟, 申晓宇, 岑官骏, 乔荣涵, 张新新, 田孟羽, 金周, 詹元杰, 孙蔷馥, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.04.01—2024.05.31)[J]. 储能科学与技术, 2024, 13(7): 2361-2376. |
[8] | 肖鹏飞, 梅琳, 陈立宝. 多元包覆石墨复合负极材料的低温电化学储锂性能研究[J]. 储能科学与技术, 2024, 13(7): 2116-2123. |
[9] | 李丹, 马铁, 刘汉浩, 郭丽. 高倍率钠离子电池炭包覆纳米铋负极材料[J]. 储能科学与技术, 2024, 13(6): 1775-1785. |
[10] | 冯仁超, 董宇, 朱新宇, 刘偲, 陈胜, 李达, 郭若禹, 王斌, 王炯辉, 李宁, 苏岳锋, 吴锋. 钠离子电池氧化石墨基负极研究进展[J]. 储能科学与技术, 2024, 13(6): 1835-1848. |
[11] | 所聪, 王阳峰, 朱紫宸, 杨雁. 钠离子电池软碳基负极的研究进展[J]. 储能科学与技术, 2024, 13(6): 1807-1823. |
[12] | 姜媛媛, 屠芳芳, 张芳平, 王盈来, 蔡佳文, 杨东辉, 李艳红, 相佳媛, 夏新辉, 傅继澎. 高性能磷酸铁锂电池补锂技术及机制[J]. 储能科学与技术, 2024, 13(5): 1435-1442. |
[13] | 石敏, 蒋鹏杰, 徐琛, 贺鑫, 梁宵. 抑制锂金属负极枝晶的电解液调控策略[J]. 储能科学与技术, 2024, 13(5): 1620-1634. |
[14] | 朱璟, 郝峻丰, 孙蔷馥, 张新新, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.2.1—2024.3.31)[J]. 储能科学与技术, 2024, 13(5): 1398-1416. |
[15] | 孙蔷馥, 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.12.1—2024.1.31)[J]. 储能科学与技术, 2024, 13(3): 725-741. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||