储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3400-3422.doi: 10.19799/j.cnki.2095-4239.2024.0282
蒋杭廷1,2(), 张倩倩1(), 张松通2, 祝夏雨2, 孟闻捷2, 邱景义2, 明海2()
收稿日期:
2024-04-01
修回日期:
2024-05-06
出版日期:
2024-10-28
发布日期:
2024-10-30
通讯作者:
张倩倩,明海
E-mail:jianghangting@emails.bjut.edu.cn;zhangqianqian@bjut.edu.cn;hai.mingenergy@hotmail.com
作者简介:
蒋杭廷(1999—),男,硕士研究生,研究方向为电化学能源材料与器件,E-mail:jianghangting@emails.bjut.edu.cn;
基金资助:
Hangting JIANG1,2(), Qianqian ZHANG1(), Songtong ZHANG2, Xiayu ZHU2, Wenjie MENG2, Jingyi QIU2, Hai MING2()
Received:
2024-04-01
Revised:
2024-05-06
Online:
2024-10-28
Published:
2024-10-30
Contact:
Qianqian ZHANG, Hai MING
E-mail:jianghangting@emails.bjut.edu.cn;zhangqianqian@bjut.edu.cn;hai.mingenergy@hotmail.com
摘要:
内阻是表征电池寿命以及电池运行状态的重要参数之一,是衡量电子和离子在电极内迁移或扩散难易程度的主要标志,其测量时的准确度易受到测量温度和压力等环境变量的影响,准确检测化学电源内阻对提高电池管理的精度具有指导意义。面对当前内阻测量变量多、误差大和应用单一等问题,本文梳理分析了近年来混合脉冲功率特性法、直流内阻测试法、交流注入法、直流放电法和电化学阻抗谱法这五种典型锂离子电池内阻测量方法的相关研究工作,重点介绍了内阻受内外环境的具体影响,创新性地引入了内阻和电池寿命、电池状态以及电池安全预警之间的关系,为提高化学电源性能评估的准确性、预测化学电源寿命和优化化学电源使用提供了解决方案,最后对内阻的测量方法和机器学习模型的改进策略进行了研判和讨论,提出了内阻测量需要达到测试时间短、测试一致性好和精度高的量化评价指标,有望持续丰富内阻测量方法及其应用,从而进一步推动化学电源内阻的精准测量以及对电池模组的状态监控与分析,为提高各类化学电源内阻的测量精确度提供新的思路和方法借鉴。
中图分类号:
蒋杭廷, 张倩倩, 张松通, 祝夏雨, 孟闻捷, 邱景义, 明海. 化学电源内阻测量及状态监测策略分析研究[J]. 储能科学与技术, 2024, 13(10): 3400-3422.
Hangting JIANG, Qianqian ZHANG, Songtong ZHANG, Xiayu ZHU, Wenjie MENG, Jingyi QIU, Hai MING. Internal resistance measurement and condition monitoring strategy for chemical power systems[J]. Energy Storage Science and Technology, 2024, 13(10): 3400-3422.
1 | LEE S, KIM J, CHO B H. Maximum pulse current estimation for high accuracy power capability prediction of a Li-Ion battery[J]. Microelectronics Reliability, 2015, 55(3/4): 572-581. DOI: 10.1016/j.microrel.2014.12.016. |
2 | 林成涛, 王军平, 陈全世. 电动汽车SOC估计方法原理与应用[J]. 电池, 2004, 34(5): 376-378. DOI: 10.3969/j.issn.1001-1579. 2004.05.027. |
LIN C T, WANG J P, CHEN Q S. Methods for state of charge estimation of EV batteries and their application[J]. Battery Bimonthly, 2004, 34(5): 376-378. DOI: 10.3969/j.issn.1001-1579.2004.05.027. | |
3 | 白海霞, 朱晨, 陈后金. 阀控式铅酸蓄电池内阻分析[J]. 电源技术, 2011, 35(2): 183-185, 188. DOI: 10.3969/j.issn.1002-087X.2011.02.016. |
BAI H X, ZHU C, CHEN H J. Analysis of internal resistance of valve-regulated lead acid batteries[J]. Chinese Journal of Power Sources, 2011, 35(2): 183-185, 188. DOI: 10.3969/j.issn.1002-087X.2011.02.016. | |
4 | 李莹, 朱武. 基于小电流二次放电法的蓄电池内阻在线检测研究[J]. 计算机测量与控制, 2016, 24(4): 45-47. DOI: 10.16526/j.cnki.11-4762/tp.2016.04.014. |
LI Y, ZHU W. Battery internal resistance online detection research based on the small current secondary discharge[J]. Computer Measurement & Control, 2016, 24(4): 45-47. DOI: 10.16526/j.cnki.11-4762/tp.2016.04.014. | |
5 | PATTIPATI B, PATTIPATI K, CHRISTOPHERSON J P, et al. Automotive battery management systems[C]// 2008 IEEE AUTOTESTCON. IEEE, 2008: 581-586. DOI: 10.1109/AUTEST.2008.4662684. |
6 | 陈欣蕊, 谭立志, 赵彦民, 等. 磷酸铁锂电池循环老化后不同SOC状态热特性研究[J]. 电源技术, 2021, 45(7): 877-880. DOI: 10.3969/j.issn.1002-087X.2021.07.013. |
CHEN X R, TAN L Z, ZHAO Y M, et al. Thermal characteristics of lithium-iron phosphate batteries under different SOCs after cycles[J]. Chinese Journal of Power Sources, 2021, 45(7): 877-880. DOI: 10.3969/j.issn.1002-087X.2021.07.013. | |
7 | 时玮, 姜久春, 李索宇, 等. 磷酸铁锂电池SOC估算方法研究[J]. 电子测量与仪器学报, 2010, 24(8): 769-774. DOI: 10.3724/SP.J.1187.2010.00769. |
SHI W, JIANG J C, LI S Y, et al. Research on SOC estimation for LiFePO4 Li-ion batteries[J]. Journal of Electronic Measurement and Instrumentation, 2010, 24(8): 769-774. DOI: 10.3724/SP.J.1187.2010.00769. | |
8 | 高欢, 张立炎, 陈启宏. 基于实时内阻测试的锂电池自适应电流充电策略[J]. 可再生能源, 2020, 38(7): 972-979. |
GAO H, ZHANG L Y, CHEN Q H. Adaptive current charging strategy for lithium battery based on real-time internal resistance test[J]. Renewable Energy, 2020, 38(7): 972-979. | |
9 | SUN J H, KAINZ J. Optimization of hybrid pulse power characterization profile for equivalent circuit model parameter identification of Li-ion battery based on Taguchi method[J]. Journal of Energy Storage, 2023, 70: 108034. DOI: 10.1016/j.est.2023.108034. |
10 | 王芳, 孙智鹏, 林春景, 等. 能量型磷酸铁锂动力电池直流内阻测试及分析[J]. 重庆理工大学学报(自然科学), 2017, 31(8): 44-50. DOI: 10.3969/j.issn.1674-8425(z).2017.08.007. |
WANG F, SUN Z P, LIN C J, et al. Experimental analysis of internal resistance of energy-type LiFePO4 power batteries and its influencing factors[J]. Journal of Chongqing University of Technology (Natural Science), 2017, 31(8): 44-50. DOI: 10.3969/j.issn.1674-8425(z).2017.08.007. | |
11 | 韦海燕, 钟腾云, 潘海鸿, 等. 基于改进HPPC锂离子电池内阻测试方法研究[J]. 电源技术, 2019, 43(8): 1309-1311, 1339. DOI: 10.3969/j.issn.1002-087X.2019.08.019. |
WEI H Y, ZHONG T Y, PAN H H, et al. Study on measurement method of internal resistance of lithium-ion battery based on improved HPPC[J]. Chinese Journal of Power Sources, 2019, 43(8): 1309-1311, 1339. DOI: 10.3969/j.issn.1002-087X.2019.08.019. | |
12 | 何志超, 杨耕, 卢兰光, 等. 基于恒流外特性和SOC的电池直流内阻测试方法[J]. 清华大学学报(自然科学版), 2015, 55(5): 532-537. DOI: 10.16511/j.cnki.qhdxxb.2015.05.009. |
HE Z C, YANG G, LU L G, et al. Battery DC internal resistance test method based on the constant current external characteristics and SOC[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(5): 532-537. DOI: 10.16511/j.cnki.qhdxxb.2015.05.009. | |
13 | ZOU Y, HU X S, MA H M, et al. Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles[J]. Journal of Power Sources, 2015, 273: 793-803. DOI: 10.1016/j.jpowsour.2014.09.146. |
14 | XIONG R, LI L L, TIAN J P. Towards a smarter battery management system: A critical review on battery state of health monitoring methods[J]. Journal of Power Sources, 2018, 405: 18-29. DOI: 10.1016/j.jpowsour.2018.10.019. |
15 | REMMLINGER J, BUCHHOLZ M, MEILER M, et al. State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation[J]. Journal of Power Sources, 2011, 196(12): 5357-5363. DOI: 10.1016/j.jpowsour.2010.08.035. |
16 | 凌仕刚, 吴娇杨, 张舒, 等. 锂离子电池基础科学问题(XIII)——电化学测量方法[J]. 储能科学与技术, 2015, 4(1): 83-103. DOI: 10.3969/j.issn.2095-4239.2015.01.010. |
LING S G, WU J Y, ZHANG S, et al. Fundamental scientific aspects of lithium ion batteries(XIII)—Electrochemical measurement[J]. Energy Storage Science and Technology, 2015, 4(1): 83-103. DOI: 10.3969/j.issn.2095-4239.2015.01.010. | |
17 | 潘斌, 董栋, 钱东培, 等. 磷酸铁锂电池内阻分量快速检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 189-194. DOI: 10.3785/j.issn.1008-973X.2021.01.022. |
PAN B, DONG D, QIAN D P, et al. Quick identification of internal resistance components for lithium ion battery with LiFePO4 cathode[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(1): 189-194. DOI: 10.3785/j.issn.1008-973X.2021.01.022. | |
18 | 徐晓东, 刘洪文, 杨权. 锂离子电池内阻测试方法研究[J]. 中国测试, 2010, 36(6): 24-26. |
XU X D, LIU H W, YANG Q. Study on impedance measurement about lithium ion batteries[J]. China Measurement & Test, 2010, 36(6): 24-26. | |
19 | 杜旭浩, 李秉宇, 陈晓东, 等. 基于直流二次放电法的蓄电池内阻测试[J]. 电源技术, 2017, 41(11): 1599-1601, 1639. DOI: 10.3969/j.issn.1002-087X.2017.11.029. |
DU X H, LI B Y, CHEN X D, et al. Battery internal resistance test method and device based on DC two discharge method[J]. Chinese Journal of Power Sources, 2017, 41(11): 1599-1601, 1639. DOI: 10.3969/j.issn.1002-087X.2017.11.029. | |
20 | 刘登峰, 邵天章. 蓄电池内阻测试仪的设计[J]. 电源技术, 2011, 35(3): 305-307. DOI: 10.3969/j.issn.1002-087X.2011.03.022. |
LIU D F, SHAO T Z. Design of battery internal resistance measuring instrument[J]. Chinese Journal of Power Sources, 2011, 35(3): 305-307. DOI: 10.3969/j.issn.1002-087X.2011.03.022. | |
21 | 黄鑫, 蓝贤桂. 基于交流注入法的铅酸蓄电池内阻检测系统[J]. 工业技术创新, 2020, 7(6): 67-74. DOI: 10.14103/j.issn.2095-8412.2020.06.012. |
HUANG X, LAN X G. Internal resistance detection system for lead-acid battery based on AC injection method[J]. Industrial Technology Innovation, 2020, 7(6): 67-74. DOI: 10.14103/j.issn.2095-8412.2020.06.012. | |
22 | GIESS H, KNIVETON M. Overview of the revised IEC 60896-2-1 standard for the test of VRLA batteries for stationary service-an update[C]// Proceedings of the 2001 Twenty-Third International Telecommunications Energy Conference INTELEC 2001. IET, 2001. |
23 | 伊晓波, 王琰, 刘明伟. GB/T 19638.2—2005固定型阀控密封式铅酸蓄电池标准的研究与制定[J]. 蓄电池, 2005, 42(3): 131-138. DOI: 10.16679/j.cnki.21-1121.2005.03.011. |
YI X B, WANG Y, LIU M W. GB/T 19638.2—2005 research and formulation of standard for fixed valve-regulated sealed lead-acid battery[J]. Chinese Labat Man, 2005, 42(3): 131-138. DOI: 10.16679/j.cnki.21-1121.2005.03.011. | |
24 | 梅成林. 基于双负载控制的蓄电池二次放电法内阻测试技术[J]. 测控技术, 2015, 34(8): 49-51. DOI: 10.19708/j.ckjs.2015.08.014. |
MEI C L. Test technique of VRLA internal resistance of double discharge based on dual load control[J]. Measurement & Control Technology, 2015, 34(8): 49-51. DOI: 10.19708/j.ckjs. 2015.08.014. | |
25 | 李芳培, 毛建国, 沈峘, 等. 基于交流阻抗法的蓄电池内阻测量[J]. 重庆工学院学报(自然科学版), 2009, 23(9): 93-98. DOI: 10.3969/j.issn.1674-8425.2009.09.021. |
LI F P, MAO J G, SHEN H, et al. Battery internal resistance measurement using AC impendent method[J]. Journal of Chongqing Institute of Technology: Natural Science Edition, 2009, 23(9): 93-98. DOI: 10.3969/j.issn.1674-8425.2009.09.021. | |
26 | 付艳玲, 李秀学, 郑淳, 等. 基于交流阻抗法的锂电池内阻测量方法研究与实现[J]. 质量安全与检验检测, 2023, 33(4): 58-61. |
FU Y L, LI X X, ZHENG C, et al. Research and implementation of internal resistance measurement method of lithium battery based on AC impedance method[J]. Quality & Safety & Inspection & Testing, 2023, 33(4): 58-61. | |
27 | 赵旭, 陈少华, 王小荣, 等. 基于交流阻抗法的退役磷酸铁锂动力电池分选成组技术研究[J]. 能源工程, 2022, 42(3): 35-38, 44. DOI: 10.16189/j.cnki.nygc.2022.03.011. |
ZHAO X, CHEN S H, WANG X R, et al. Sorting and grouping technology for retired lithium iron phosphate batteries of electrical vehicles based on electrochemical impedance spectroscopy[J]. Energy Engineering, 2022, 42(3): 35-38, 44. DOI: 10.16189/j.cnki.nygc.2022.03.011. | |
28 | 郎春艳, 罗卜尔思. 某三元材料锂离子电池低温性能研究[J]. 机械与电子, 2016, 34(5): 7-12. DOI: 10.3969/j.issn.1001-2257.2016.05.002. |
LANG C Y, LUO B E S. Research on cryogenic properties of NCM batteries[J]. Machinery & Electronics, 2016, 34(5): 7-12. DOI: 10.3969/j.issn.1001-2257.2016.05.002. | |
29 | JAGUEMONT J, BOULON L, DUBÉ Y. Characterization and modeling of a hybrid-electric-vehicle lithium-ion battery pack at low temperatures[J]. IEEE Transactions on Vehicular Technology, 2016, 65(1): 1-14. DOI: 10.1109/TVT.2015.2391053. |
30 | 纪常伟, 孙洁洁, 汪硕峰, 等. 三元18650电池低温放电特性的实验研究[J]. 北京工业大学学报, 2018, 44(10): 1335-1339. DOI: 10.11936/bjutxb2017080013. |
JI C W, SUN J J, WANG S F, et al. Experimental study of discharge characteristics of NCM 18650 batteries at low-temperature environment[J]. Journal of Beijing University of Technology, 2018, 44(10): 1335-1339. DOI: 10.11936/bjutxb2017080013. | |
31 | 刘慧, 张彤, 盖福祥, 等. 混合动力汽车三元锂电池基本性能的研究[J]. 农业装备与车辆工程, 2019, 57(11): 92-95. DOI: 10.3969/j.issn.1673-3142.2019.11.023. |
LIU H, ZHANG T, GE F X, et al. Study on basic performance of NCM-Li battery for HEV[J]. Agricultural Equipment & Vehicle Engineering, 2019, 57(11): 92-95. DOI: 10.3969/j.issn.1673-3142.2019.11.023. | |
32 | 张阳琳, 别传玉, 高标, 等. 三元锂电池储能性能与工作环境温度关系研究[J]. 电源技术, 2022, 46(12): 1402-1406. DOI: 10.3969/j.issn.1002-087X.2022.12.13. |
ZHANG Y L, BIE C Y, GAO B, et al. Research on relationship between energy storage performance and working temperature of ternary lithium battery[J]. Chinese Journal of Power Sources, 2022, 46(12): 1402-1406. DOI: 10.3969/j.issn.1002-087X.2022.12.13. | |
33 | 林春景, 李斌, 常国峰, 等. 不同温度下磷酸铁锂电池内阻特性实验研究[J]. 电源技术, 2015, 39(1): 22-25. DOI: 10.3969/j.issn.1002-087X.2015.01.006. |
LIN C J, LI B, CHANG G F, et al. Experimental study on internal resistance of LiFePO4 batteries under different ambient temperatures[J]. Chinese Journal of Power Sources, 2015, 39(1): 22-25. DOI: 10.3969/j.issn.1002-087X.2015.01.006. | |
34 | RATNAKUMAR B V, SMART M C, WHITCANACK L D, et al. The impedance characteristics of Mars Exploration Rover Li-ion batteries[J]. Journal of Power Sources, 2006, 159(2): 1428-1439. DOI: 10.1016/j.jpowsour.2005.11.085. |
35 | LIU X T, CHEN Z H, ZHANG C B, et al. A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation[J]. Applied Energy, 2014, 123: 263-272. DOI: 10.1016/j.apenergy.2014.02.072. |
36 | WAAG W, KÄBITZ S, SAUER D U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application[J]. Applied Energy, 2013, 102: 885-897. DOI: 10.1016/j.apenergy.2012.09.030. |
37 | WANG S Q, LU L G, REN D S, et al. Experimental investigation on the feasibility of heat pipe-based thermal management system to prevent thermal runaway propagation[J]. Journal of Electrochemical Energy Conversion and Storage, 2019, 16(3): 031006. DOI: 10.1115/1.4042555. |
38 | MALIK M, MATHEW M, DINCER I, et al. Experimental investigation and thermal modelling of a series connected LiFePO4 battery pack[J]. International Journal of Thermal Sciences, 2018, 132: 466-477. DOI: 10.1016/j.ijthermalsci. 2018.06.025. |
39 | FENG X N, SUN J, OUYANG M G, et al. Characterization of large format lithium ion battery exposed to extremely high temperature[J]. Journal of Power Sources, 2014, 272: 457-467. DOI: 10.1016/j.jpowsour.2014.08.094. |
40 | 沈嘉丽, 方奕栋, 苏林, 等. 18650型锂动力电池热特性实验研究[J]. 农业装备与车辆工程, 2019, 57(12): 67-71. DOI: 10.3969/j.issn.1673-3142.2019.12.015. |
SHEN J L, FANG Y D, SU L, et al. Experimental investigation on thermal behavior of 18650 lithium-ion power battery[J]. Agricultural Equipment & Vehicle Engineering, 2019, 57(12): 67-71. DOI: 10.3969/j.issn.1673-3142.2019.12.015. | |
41 | WANG K K, GAO F, ZHU Y L, et al. Internal resistance and heat generation of soft package Li4Ti5O12 battery during charge and discharge[J]. Energy, 2018, 149: 364-374. DOI: 10.1016/j.energy.2018.02.052. |
42 | 贺元骅, 郭绪乾, 伍毅. 高高原火行为研究进展[J]. 消防科学与技术, 2014, 33(5): 497-500. DOI: 10.3969/j.issn.1009-0029. 2014.05.007. |
HE Y H, GUO X Q, WU Y. Research progress of combustion characteristics at high plateau[J]. Fire Science and Technology, 2014, 33(5): 497-500. DOI: 10.3969/j.issn.1009-0029.2014.05.007. | |
43 | MAYSAM S, ABARDEH R H. Air pressure dependence of natural-convection heat transfer[J]. Lecture Notes in Engineering & Computer Science, 2010, 2184(1): 1183-1192. |
44 | COOK R W, SWAN L G, PLUCKNETT K P. Failure mode analysis of lithium ion batteries operated for low Earth orbit CubeSat applications[J]. Journal of Energy Storage, 2020, 31: 101561. DOI: 10.1016/j.est.2020.101561. |
45 | 刘磊, 王芳, 任山, 等. 海拔高度对动力电池性能的影响研究[J]. 电源技术, 2018, 42(11): 1637-1639, 1693. DOI: 10.3969/j.issn.1002-087X.2018.11.014. |
LIU L, WANG F, REN S, et al. Influence of altitude on performance of power battery for electric vehicle[J]. Chinese Journal of Power Sources, 2018, 42(11): 1637-1639, 1693. DOI: 10.3969/j.issn.1002-087X.2018.11.014. | |
46 | 廖成龙, 王刘涛, 王健雁, 等. 动力锂电池系统运行环境条件对其性能影响的研究[J]. 化工新型材料, 2020, 48(7): 167-170. DOI: 10.19817/j.cnki.issn1006-3536.2020.07.038. |
LIAO C L, WANG L T, WANG J Y, et al. Study on the influence of operating environment condition on the performance of REESS[J]. New Chemical Materials, 2020, 48(7): 167-170. DOI: 10.19817/j.cnki.issn1006-3536.2020.07.038. | |
47 | 谢松, 平现科, 巩译泽. 高高原低气压环境对锂离子电池循环性能的影响[J]. 北京航空航天大学学报, 2022, 48(10): 1883-1888. DOI: 10.13700/j.bh.1001-5965.2021.0776. |
XIE S, PING X K, GONG Y Z. Effect of high altitude and low pressure on cycle performance of lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1883-1888. DOI: 10.13700/j.bh.1001-5965.2021.0776. | |
48 | 耿晶, 张万良, 战东红, 等. 动力电池SOC估算方法的实时工况对比研究[J]. 时代汽车, 2021(2): 124-126. DOI: 10.3969/j.issn.1672-9668.2021.02.052. |
GENG J, ZHANG W L, ZHAN D H, et al. Comparative study of the power batteries on real-time conditions of SOC estimation methods[J]. Auto Time, 2021(2): 124-126. DOI: 10.3969/j.issn.1672-9668.2021.02.052. | |
49 | 张宁, 刘一飞, 汤建林, 等. 基于KF-BPNN融合算法的电池循环寿命预测方法[J]. 海军工程大学学报, 2022, 34(5): 39-44. DOI: 10.7495/j.issn.1009-3486.2022.05.007. |
ZHANG N, LIU Y F, TANG J L, et al. Battery cycle life prediction method based on KF-BPNN fusion algorithm[J]. Journal of Naval University of Engineering, 2022, 34(5): 39-44. DOI: 10.7495/j.issn.1009-3486.2022.05.007. | |
50 | 黄锋, 问朋朋, 汪兴兴, 等. 修正型PNGV构架的锂电池SOC预测及内阻识别[J]. 实验室研究与探索, 2020, 39(1): 37-41. DOI: 10.3969/j.issn.1006-7167.2020.01.009. |
HUANG F, WEN P P, WANG X X, et al. Research of SOC prediction and internal resistance identification for lithium battery based on modified PNGV framework[J]. Research and Exploration in Laboratory, 2020, 39(1): 37-41. DOI: 10.3969/j.issn.1006-7167.2020.01.009. | |
51 | 张菲菲, 王寅超, 陆忠心, 等. 基于内阻预测的阀控铅酸蓄电池故障预警方法[J]. 电源技术, 2020, 44(6): 860-862. |
ZHANG F F, WANG Y C, LU Z X, et al. Fault early warning method for valve-regulated lead-acid battery based on internal resistance prediction[J]. Chinese Journal of Power Sources, 2020, 44(6): 860-862. | |
52 | 李学哲, 张有东, 封孝辉, 等. 基于内阻法的矿用锂电池高精度容量检测系统研究[J]. 煤炭工程, 2016, 48(9): 127-129, 133. DOI: 10.11799/ce201609037. |
LI X Z, ZHANG Y D, FENG X H, et al. Study on high precision capacity detection system of mine lithium battery based on internal resistance test method[J]. Coal Engineering, 2016, 48(9): 127-129, 133. DOI: 10.11799/ce201609037. | |
53 | TAN X J, TAN Y Q, ZHAN D, et al. Real-time state-of-health estimation of lithium-ion batteries based on the equivalent internal resistance[J]. IEEE Access, 2020, 8: 56811-56822. DOI: 10.1109/ACCESS.2020.2979570. |
54 | 耿萌萌, 惠东, 刘汉民, 等. 退役三元电池健康状态在线估算方法研究[J]. 电源技术, 2022, 46(3): 262-266. DOI: 10.3969/j.issn.1002-087X.2022.03.011. |
GENG M M, HUI D, LIU H M, et al. Research on online estimation method of health state of retired ternary battery[J]. Chinese Journal of Power Sources, 2022, 46(3): 262-266. DOI: 10.3969/j.issn.1002-087X.2022.03.011. | |
55 | 苏伟, 周方方, 钟国彬, 等. 淘汰磷酸铁锂动力电池内阻测试方法研究[J]. 电源技术, 2016, 40(2): 274-276, 320. DOI: 10.3969/j.issn.1002-087X.2016.02.012. |
SU W, ZHOU F F, ZHONG G B, et al. Study of eliminated power LiFePO4 batteries resistance test methods[J]. Chinese Journal of Power Sources, 2016, 40(2): 274-276, 320. DOI: 10.3969/j.issn.1002-087X.2016.02.012. | |
56 | 范茂松, 刘皓, 王凯丰, 等. 退役磷酸铁锂动力锂离子电池的适用性[J]. 电池, 2019, 49(1): 64-67. DOI: 10.19535/j.1001-1579.2019.01.016. |
FAN M S, LIU H, WANG K F, et al. Applicability of ex-service lithium iron phosphate power Li-ion battery[J]. Battery Bimonthly, 2019, 49(1): 64-67. DOI: 10.19535/j.1001-1579.2019.01.016. | |
57 | LI D, DENG J J, ZHANG Z S, et al. Battery safety risk assessment in real-world electric vehicles based on abnormal internal resistance using proposed robust estimation method and hybrid neural networks[J]. IEEE Transactions on Power Electronics, 2023, 38(6): 7661-7673. DOI: 10.1109/TPEL. 2023.3241938. |
58 | SRINIVASAN R, CARKHUFF B G, BUTLER M H, et al. Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells[J]. Electrochimica Acta, 2011, 56(17): 6198-6204. DOI: 10.1016/j.electacta.2011.03.136. |
59 | SRINIVASAN R, DEMIREV P A, CARKHUFF B G. Rapid monitoring of impedance phase shifts in lithium-ion batteries for hazard prevention[J]. Journal of Power Sources, 2018, 405: 30-36. DOI: 10.1016/j.jpowsour.2018.10.014. |
60 | TAN A H, ONG D S. Kernel-based impulse response estimation with prior DC gain using built-In self-scaling technique[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 7295-7305. DOI: 10.1109/TIM.2020.2975528. |
61 | 汤秀芬, 魏凤兰. 基于锁相放大技术检测VRLA电池的内阻[J]. 电池, 2009, 39(1): 38-39. DOI: 10.3969/j.issn.1001-1579. 2009.01.014. |
TANG X F, WEI F L. Detecting internal resistance of VRLA battery based on phase-lock amplifier[J]. Battery Bimonthly, 2009, 39(1): 38-39. DOI: 10.3969/j.issn.1001-1579.2009.01.014. | |
62 | 孙冬, 许爽. 梯次利用锂电池健康状态预测[J]. 电工技术学报, 2018, 33(9): 2121-2129. DOI: 10.19595/j.cnki.1000-6753.tces.170107. |
SUN D, XU S. State of health prediction of second-use lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2121-2129. DOI: 10.19595/j.cnki.1000-6753.tces.170107. | |
63 | 任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743. DOI: 10.19799/j.cnki.2095-4239.2020.0395. |
REN P, WANG S L, HE M F, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. DOI: 10.19799/j.cnki.2095-4239.2020.0395. | |
64 | 王宏志, 武俊峰. 基于LabVIEW的锂离子动力电池内阻测试系统[J]. 自动化技术与应用, 2009, 28(4): 80-82. DOI: 10.3969/j.issn.1003-7241.2009.04.028. |
WANG H Z, WU J F. Inner resistance measurement system for Li-ion power battery based on LabVIEW[J]. Techniques of Automation and Applications, 2009, 28(4): 80-82. DOI: 10.3969/j.issn.1003-7241.2009.04.028. | |
65 | LATA S M, VERMA H K, KUMARI P. Development of virtual resistance meters using LabVIEW[J]. International Journal of Electrical and Computer Engineering (IJECE), 2018, 8(1): 133. DOI: 10.11591/ijece.v8i1.pp133-140. |
66 | 江海, 李革臣, 苏淇桂, 等. 基于MSP 430单片机的便携式电池内阻测试仪[J]. 电源技术, 2007, 31(7): 548-550. DOI: 10.3969/j.issn.1002-087X.2007.07.012. |
JIANG H, LI G C, SU Q G, et al. Portable instrument based on MSP 430 MCU for testing battery internal impedance[J]. Chinese Journal of Power Sources, 2007, 31(7): 548-550. DOI: 10.3969/j.issn.1002-087X.2007.07.012. | |
67 | 戴海峰, 魏学哲, 孙泽昌. 基于等效电路的内阻自适应锂离子电池模型[J]. 同济大学学报(自然科学版), 2010, 38(1): 98-102. DOI: 10.3969/j.issn.0253-374x.2010.01.018. |
DAI H F, WEI X Z, SUN Z C. An inner resistance adaptive model based on equivalent circuit of lithium-ion batteries[J]. Journal of Tongji University (Natural Science), 2010, 38(1): 98-102. DOI: 10.3969/j.issn.0253-374x.2010.01.018. | |
68 | WAAG W, FLEISCHER C, SAUER D U. Adaptive on-line prediction of the available power of lithium-ion batteries[J]. Journal of Power Sources, 2013, 242: 548-559. DOI: 10.1016/j.jpowsour.2013.05.111. |
69 | WAAG W, FLEISCHER C, SAUER D U. On-line estimation of lithium-ion battery impedance parameters using a novel varied-parameters approach[J]. Journal of Power Sources, 2013, 237: 260-269. DOI: 10.1016/j.jpowsour.2013.03.034. |
70 | 李欣雨, 韩雪冰, 卢兰光, 等. 基于大倍率电流脉冲的动力锂离子电池阻抗模型优化[J]. 储能科学与技术, 2023, 12(5): 1686-1694. DOI: 10.19799/j.cnki.2095-4239.2023.0055. |
LI X Y, HAN X B, LU L G, et al. Optimization of an impedance model for power Li-ion batteries based on a large multiplier current pulse[J]. Energy Storage Science and Technology, 2023, 12(5): 1686-1694. DOI: 10.19799/j.cnki.2095-4239.2023.0055. | |
71 | 邵海岳, 钟志华, 何莉萍, 等. 电动汽车动力电池模型及SOC预测方法[J]. 电源技术, 2004, 28(10): 637-640. DOI: 10.3969/j.issn.1002-087X.2004.10.012. |
SHAO H Y, ZHONG Z H, HE L P, et al. Research on mathematic model and SOC estimation method of traction-battery for electric vehicle[J]. Chinese Journal of Power Sources, 2004, 28(10): 637-640. DOI: 10.3969/j.issn.1002-087X.2004.10.012. | |
72 | 戴海峰, 魏学哲, 孙泽昌. 基于扩展卡尔曼滤波算法的燃料电池车用锂离子动力电池荷电状态估计[J]. 机械工程学报, 2007, 43(2): 92-95, 103. DOI: 10.3321/j.issn:0577-6686.2007.02.015. |
DAI H F, WEI X Z, SUN Z C. Estimate state of charge of power lithium-ion batteries used on fuel cell hybrid vehicle with method based on extended Kalman filtering[J]. Chinese Journal of Mechanical Engineering, 2007, 43(2): 92-95, 103. DOI: 10.3321/j.issn:0577-6686.2007.02.015. |
[1] | 陆继忠, 彭思敏, 李晓宇. 基于多特征量分析和LSTM-XGBoost模型的锂离子电池SOH估计方法[J]. 储能科学与技术, 2024, 13(9): 2972-2982. |
[2] | 陈媛, 章思源, 蔡宇晶, 黄小贺, 刘炎忠. 融合多项式特征扩展与CNN-Transformer模型的锂电池SOH估计[J]. 储能科学与技术, 2024, 13(9): 2995-3005. |
[3] | 樊金保, 李娜, 吴宜琨, 贺春旺, 杨乐, 宋维力, 陈浩森. 能源电池单体层级数字孪生技术[J]. 储能科学与技术, 2024, 13(9): 3112-3133. |
[4] | 李亚捷, 王依平, 陈斌, 林海龙, 张更, 施思齐. 机器学习辅助相场模拟预测锂离子输运参数对电池枝晶最大生长高度和空间利用率的影响[J]. 储能科学与技术, 2024, 13(9): 2864-2870. |
[5] | 邢瑞鹤, 翁素婷, 李叶晶, 张佳怡, 张浩, 王雪锋. AI辅助电池材料表征与数据分析[J]. 储能科学与技术, 2024, 13(9): 2839-2863. |
[6] | 焦君宇, 张全權, 陈宁波, 王冀钰, 芦秋迪, 丁浩浩, 彭鹏, 宋孝河, 张帆, 郑家新. 电池大数据智能分析平台的研发与应用[J]. 储能科学与技术, 2024, 13(9): 3198-3213. |
[7] | 刘定宏, 董文楷, 李召阳, 张红烛, 齐昕. 基于RUN-GRU-attention模型的实车动力电池健康状态估计方法[J]. 储能科学与技术, 2024, 13(9): 3042-3058. |
[8] | 柯学, 洪华伟, 郑鹏, 李智诚, 范培潇, 杨军, 郭宇铮, 蒯春光. 基于多时间尺度建模自动特征提取和通道注意力机制的锂离子电池健康状态估计[J]. 储能科学与技术, 2024, 13(9): 3059-3071. |
[9] | 周国兵, 许审镇. 锂金属负极固态电解质界面膜形成和生长机理的理论研究进展[J]. 储能科学与技术, 2024, 13(9): 3150-3160. |
[10] | 李从心, 岳美玲, 李昕彤, 熊庆辉, 刘孝艳. 基于条件神经网络的质子交换膜燃料电池的老化性能预测[J]. 储能科学与技术, 2024, 13(9): 3094-3102. |
[11] | 刘子玉, 姜泽坤, 邱伟, 徐泉, 牛迎春, 徐春明, 周天航. 人工智能在长时液流电池储能中的应用:性能优化和大模型[J]. 储能科学与技术, 2024, 13(9): 2871-2883. |
[12] | 谢莹莹, 邓斌, 张与之, 王晓旭, 张林峰. AI for Science时代下的电池平台化智能研发[J]. 储能科学与技术, 2024, 13(9): 3182-3197. |
[13] | 朱振威, 苗嘉伟, 祝夏雨, 王晓旭, 邱景义, 张浩. 基于机器学习方法的锂电池剩余寿命预测研究进展[J]. 储能科学与技术, 2024, 13(9): 3134-3149. |
[14] | 何智峰, 陶远哲, 胡泳钢, 王其聪, 杨勇. 机器学习强化的电化学阻抗谱技术及其在锂离子电池研究中的应用[J]. 储能科学与技术, 2024, 13(9): 2933-2951. |
[15] | 黄煜峰, 梁焕超, 许磊. 基于卡尔曼滤波算法优化Transformer模型的锂离子电池健康状态预测方法[J]. 储能科学与技术, 2024, 13(8): 2791-2802. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||