1 |
ZHU Z X, JIANG T L, ALI M, et al. Rechargeable batteries for grid scale energy storage[J]. Chemical Reviews, 2022, 122(22): 16610-16751. DOI: 10.1021/acs.chemrev.2c00289.
|
2 |
XIA X N, LI P W, XIA Z G, et al. Life cycle carbon footprint of electric vehicles in different countries: A review[J]. Separation and Purification Technology, 2022, 301: 122063. DOI: 10.1016/j.seppur.2022.122063.
|
3 |
HUANG Y M, LI J. Key challenges for grid-scale lithium-ion battery energy storage[J]. Advanced Energy Materials, 2022, 12(48): 2202197. DOI: 10.1002/aenm.202202197.
|
4 |
MEI W X, LIU Z, WANG C D, et al. Operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14(1): 5251. DOI: 10.1038/s41467-023-40995-3.
|
5 |
DUAN J, TANG X, DAI H F, et al. Building safe lithium-ion batteries for electric vehicles: A review[J]. Electrochemical Energy Reviews, 2020, 3(1): 1-42. DOI: 10.1007/s41918-019-00060-4.
|
6 |
ZHANG S C, SHEN Z Y, LU Y Y. Research progress of thermal runaway and safety for lithium metal batteries[J]. Acta Physico Chimica Sinica, 2020, DOI: 10.3866/pku.whxb202008065.
|
7 |
郝奕帆, 祝夏雨, 王静, 等. 电池无损检测监测方法分析[J]. 储能科学与技术, 2023, 12(5): 1713-1737. DOI: 10.19799/j.cnki.2095-4239.2023.0081.
|
|
HAO Y F, ZHU X Y, WANG J, et al. Analysis of battery nondestructive testing and monitoring methods[J]. Energy Storage Science and Technology, 2023, 12(5): 1713-1737. DOI: 10.19799/j.cnki.2095-4239.2023.0081.
|
8 |
辛耀达, 李娜, 杨乐, 等. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. DOI: 10.19799/j.cnki.2095-4239.2022.0183.
|
|
XIN Y D, LI N, YANG L, et al. Integrated sensing technology for lithium ion battery[J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. DOI: 10.19799/j.cnki.2095-4239. 2022. 0183.
|
9 |
ZHANG Y, LI Y P, GUO Z Z, et al. Health monitoring by optical fiber sensing technology for rechargeable batteries[J]. eScience, 2024, 4(1): 100174. DOI: 10.1016/j.esci.2023.100174.
|
10 |
HAN G C, YAN J Z, GUO Z, et al. A review on various optical fibre sensing methods for batteries[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111514. DOI: 10.1016/j.rser.2021.111514.
|
11 |
LIU X H, ZHANG L S, YU H Q, et al. Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle[J]. Advanced Energy Materials, 2022, 12(33): 2200889. DOI: 10.1002/aenm.202200889.
|
12 |
LI R H, LI W, SINGH A, et al. Effect of external pressure and internal stress on battery performance and lifespan[J]. Energy Storage Materials, 2022, 52: 395-429. DOI: 10.1016/j.ensm. 2022.07.034.
|
13 |
LU X B, TARASCON J M, HUANG J Q. Perspective on commercializing smart sensing for batteries[J]. eTransportation, 2022, 14: 100207. DOI: 10.1016/j.etran.2022.100207.
|
14 |
LU Y, WANG X D, MAO S Y, et al. Smart batteries enabled by implanted flexible sensors[J]. Energy & Environmental Science, 2023, 16(6): 2448-2463. DOI: 10.1039/D3EE00695F.
|
15 |
HAN S Y, LEE C, LEWIS J A, et al. Stress evolution during cycling of alloy-anode solid-state batteries[J]. Joule, 2021, 5(9): 2450-2465. DOI: 10.1016/j.joule.2021.07.002.
|
16 |
XU R Y, XIANG J W, FENG J R, et al. In situ visualization by X-Ray computed tomography on sulfur stabilization and lithium polysulfides immobilization in S@HCS/MnOx cathode[J]. Energy Storage Materials, 2020, 31: 164-171. DOI: 10.1016/j.ensm. 2020.06.011.
|
17 |
MATRAS D, ASHTON T E, DONG H, et al. Emerging chemical heterogeneities in a commercial 18650 NCA Li-ion battery during early cycling revealed by synchrotron X-ray diffraction tomography[J]. Journal of Power Sources, 2022, 539: 231589. DOI: 10.1016/j.jpowsour.2022.231589.
|
18 |
LOULI A J, ELDESOKY A, WEBER R, et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis[J]. Nature Energy, 2020, 5: 693-702. DOI: 10.1038/s41560-020-0668-8.
|
19 |
SHI X L, SUN Y C, WENG Y B, et al. Operando chemical strain analysis of CNT/VOOH during zinc insertion in Zn-ion batteries[J]. Energy & Environmental Science, 2023, 16(10): 4670-4678. DOI: 10.1039/D3EE01745A.
|
20 |
XU Z Y, SHI X L, ZHUANG X Q, et al. Chemical strain of graphite-based anode during lithiation and delithiation at various temperatures[J]. Research, 2021, 2021: 9842391. DOI: 10.34133/2021/9842391.
|
21 |
LI Y P, ZHANG Y, LI Z, et al. Operando decoding of surface strain in anode-free lithium metal batteries via optical fiber sensor[J]. Advanced Science, 2022, 9(26): e2203247. DOI: 10.1002/advs. 202203247.
|
22 |
ALBERO BLANQUER L, MARCHINI F, SEITZ J R, et al. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes[J]. Nature Communications, 2022, 13(1): 1153. DOI: 10.1038/s41467-022-28792-w.
|
23 |
ZHANG Y, XIAO X P, CHEN W L, et al. In operando monitoring the stress evolution of silicon anode electrodes during battery operation via optical fiber sensors[J]. Small, 2024, 20(29): e2311299. DOI: 10.1002/smll.202311299.
|
24 |
LU P, MEN L Q, SOOLEY K, et al. Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature[J]. Applied Physics Letters, 2009, 94(13): 131110. DOI: 10.1063/1.3115029.
|
25 |
BAE C J, MANANDHAR A, KIESEL P, et al. Monitoring the strain evolution of lithium-ion battery electrodes using an optical fiber Bragg grating sensor[J]. Energy Technology, 2016, 4(7): 851-855. DOI: 10.1002/ente.201500514.
|
26 |
MIAO Z Y, LI Y P, XIAO X P, et al. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium–sulfur batteries[J]. Energy & Environmental Science, 2022, 15(5): 2029-2038. DOI: 10.1039/D2EE00007E.
|
27 |
DENG Z, HUANG Z Y, SHEN Y, et al. Ultrasonic scanning to observe wetting and "unwetting" in Li-ion pouch cells[J]. Joule, 2020, 4(9): 2017-2029. DOI: 10.1016/j.joule.2020.07.014.
|
28 |
HUO H Y, HUANG K, LUO W, et al. Evaluating interfacial stability in solid-state pouch cells via ultrasonic imaging[J]. ACS Energy Letters, 2022, 7(2): 650-658. DOI: 10.1021/acsenergylett.1c02363.
|
29 |
邓哲, 黄震宇, 刘磊, 等. 超声技术在锂离子电池表征中的应用[J]. 储能科学与技术, 2019, 8(6): 1033-1039. DOI: 10.12028/j.issn.2095-4239.2019.0146.
|
|
DENG Z, HUANG Z Y, LIU L, et al. Applications of ultrasound technique in characterization of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1033-1039. DOI: 10.12028/j.issn.2095-4239.2019.0146.
|
30 |
DE VASCONCELOS L S, XU R, XU Z R, et al. Chemomechanics of rechargeable batteries: Status, theories, and perspectives[J]. Chemical Reviews, 2022, 122(15): 13043-13107. DOI: 10.1021/acs.chemrev.2c00002.
|
31 |
\VSIMIĆ N, JODLBAUER A, OBERAIGNER M, et al. Phase transitions and ion transport in lithium iron phosphate by atomic-scale analysis to elucidate insertion and extraction processes in Li-ion batteries[J]. Advanced Energy Materials, 2024, 14(34): 2304381. DOI: 10.1002/aenm.202304381.
|
32 |
LOULI A J, ELLIS L D, DAHN J R. Operando pressure measurements reveal solid electrolyte interphase growth to rank Li-ion cell performance[J]. Joule, 2019, 3(3): 745-761. DOI: 10.1016/j.joule.2018.12.009.
|
33 |
LOULI A J, LI J, TRUSSLER S, et al. Volume, pressure and thickness evolution of Li-ion pouch cells with silicon-composite negative electrodes[J]. Journal of the Electrochemical Society, 2017, 164(12): A2689-A2696. DOI: 10.1149/2.1691712jes.
|