储能科学与技术 ›› 2024, Vol. 13 ›› Issue (10): 3653-3655.doi: 10.19799/j.cnki.2095-4239.2024.0902

• 储能测试与评价 • 上一篇    下一篇

基于大数据和人工智能的储能系统故障预测与诊断方法研究

李根1(), 刘珊珊2()   

  1. 1.广东工商职业技术大学人工智能与大数据学院,广东 肇庆 526000
    2.广东财贸职业学院数字技术学院,广东 清远 511500
  • 收稿日期:2024-07-15 修回日期:2024-08-15 出版日期:2024-10-28 发布日期:2024-10-30
  • 通讯作者: 刘珊珊 E-mail:lg_gdgs@126.com;shan523272231@163.com
  • 作者简介:李根(1981—),男,硕士,副教授,研究方向为大数据技术、人工智能、信息安全,E-mail:lg_gdgs@126.com
  • 基金资助:
    2023年广东省教育厅青年创新人才项目(自然科学)(2023KQNCX143)

Research on fault prediction and diagnosis methods of energy storage system based on big data and artificial intelligence

Gen LI1(), Shanshan LIU2()   

  1. 1.College of Artificial Intelligence and Big Data, Guangdong Vocational and Technical University of Business and Technology, Zhaoqing 526000, Guangdong, China
    2.College of Digital Technology, Guangdong Finance & Trade Vocational College, Qingyuan 511500, Guangdong, China
  • Received:2024-07-15 Revised:2024-08-15 Online:2024-10-28 Published:2024-10-30
  • Contact: Shanshan LIU E-mail:lg_gdgs@126.com;shan523272231@163.com

摘要:

随着储能式电网技术和新能源电动汽车技术的快速发展,全球储能系统需求日益增大。然而应用环境的复杂化和电池组成的大型化增大了储能系统发生故障的概率。本文从大数据技术和人工智能技术两种视角上分别阐述了其在储能系统故障预测和诊断中的研究。大数据技术可以对大量能源数据进行分析,从而可以提高储能系统的生产和利用效率,减少能源的浪费和损失。人工智能技术可以挖掘大数据背后隐藏的有价值的信息,对能源数据进行训练,并对储能系统进行预测和诊断分析。而将大数据技术和人工智能技术进行融合,可以对大量的能源数据进行处理和分析,从而提高储能系统的效率,并对储能系统是否发生故障进行预测和诊断,促进储能系统的智能监控和管理。

关键词: 储能系统, 故障预测和诊断, 大数据技术, 人工智能

Abstract:

With the rapid development of energy storage grid technology and new energy electric vehicle technology, the global demand for energy storage systems is increasing. However, the complexity of the application environment and the large-scale battery composition increase the probability of failure of the energy storage system. This paper describes the research on big data technology and artificial intelligence technology in energy storage system fault prediction and diagnosis from two perspectives. Big data technology can analyze a large amount of energy data, thereby improving the production and utilization efficiency of energy storage systems and reducing energy waste and loss. Artificial intelligence technology can mine the valuable information hidden behind big data, train energy data, and predict and diagnose energy storage systems. The integration of big data technology and artificial intelligence technology can process and analyze a large amount of energy data, thereby improving the efficiency of energy storage systems, predicting and diagnosing whether energy storage systems have failed, and promoting the monitoring and management of energy storage systems.

Key words: energy storage system, fault prediction and diagnosis, big data technology, artificial intelligence

中图分类号: