储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3509-3520.doi: 10.19799/j.cnki.2095-4239.2025.0107

• 储能系统与工程 • 上一篇    

燃煤电厂耦合储能系统的热力学分析

王晓鹏1(), 张修澳1, 赵红霞1(), 孙秋艳2, 张浩1, 辛公明1, 柏超1()   

  1. 1.山东大学核科学与能源动力学院,山东 济南 250061
    2.山东能源电力集团有限公司,山东 济南 250000
  • 收稿日期:2025-02-06 修回日期:2025-02-23 出版日期:2025-09-28 发布日期:2025-09-05
  • 通讯作者: 赵红霞,柏超 E-mail:202314526@mail.sdu.edu.cn;hongxia.zhao@sdu.edu.cn;baichao@sdu.edu.cn
  • 作者简介:王晓鹏(2002—),男,硕士研究生,研究方向:储能系统,E-mail:202314526@mail.sdu.edu.cn
    赵红霞,教授,硕士生导师,博士,主要研究方向为空调热泵、喷射器等。E-mail: hongxia.zhao@sdu.edu.cn。共同

Thermodynamic analysis of a coupled energy storage system in a coal-fired power plant

Xiaopeng WANG1(), Xiuao ZHANG1, Hongxia ZHAO1(), Qiuyan SUN2, Hao ZHANG1, Gongming XIN1, Chao BAI1()   

  1. 1.School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
    2.Shandong Energy Group Electric Power Group CO. Ltd. , Jinan 250000, Shandong, China
  • Received:2025-02-06 Revised:2025-02-23 Online:2025-09-28 Published:2025-09-05
  • Contact: Hongxia ZHAO, Chao BAI E-mail:202314526@mail.sdu.edu.cn;hongxia.zhao@sdu.edu.cn;baichao@sdu.edu.cn

摘要:

能源是人类生产生活的关键要素,是人类生存和社会发展的基础。在未来的电力系统中,火电厂将更多地发挥辅助调峰作用,为可再生能源提供更大的能源利用空间,这就要求热电联产机组(combined heating and power,CHP)增加自身的灵活性,避免机组在调峰时频繁地启停。本文将热电联产机组与压缩二氧化碳储能系统(compressed carbon dioxide energy storage system,CCES),以及蒸汽喷射器(steam ejector,SE)进行耦合,提出了3种改进方法(方法1:中压缸排汽;方法2:高压缸排汽引射低压缸排汽;方法3:再热蒸汽引射中压缸排汽),通过建立热力学模型来探究CHP-SE-CCES三元耦合系统(CSC)的技术潜力,分析了该三元耦合系统运行的可行性,评估了不同方法相对于基本方法的优越性,并分析了主要参数对压缩二氧化碳储能系统以及三元耦合系统性能参数的影响。结果表明:蒸汽喷射器的加入有助于提升耦合系统运行的灵活性,在额定热负荷下,方法2和方法3可分别降低电负荷68.56 MW和50.56 MW,扩大了系统运行的可行域,提高了机组热电解耦的能力。热水罐温度的升高使系统功率效率(system power efficiency,SPE)从48.84%提升到66.84%,储能密度(energy storage density,ESD)从1.07 kWh/m3提升到1.47 kWh/m3,功率变化率(power change ratio,PCR)从55.85%提升到57.82%。综合考虑CSC的能耗,方法2为最优方法。本文提出的方法有助于推进热电机组的灵活性改造,为热电机组与CCES技术的结合提供技术参考。

关键词: 热电机组, 热电解耦, 压缩二氧化碳储能, 蒸汽喷射器, 热力学分析

Abstract:

Energy is a fundamental element of human production and life, serving as the foundation for survival and social development. In future power systems, thermal power plants will primarily serve as auxiliary peak regulation sources, providing greater flexibility to accommodate renewable energy integration. This requires combined heating and power units (CHP) to enhance their operational flexibility and avoid frequent start-stop cycles during peak regulation. In this study, a CHP unit is coupled with a compressed carbon dioxide energy storage system (CCES) and a steam ejector (SE), and three improvement schemes are proposed. The technical potential of the CHP-SE-CCES coupling system (CSC) is investigated through a thermodynamic model, and its operational feasibility is analyzed. The advantages of the different schemes relative to the basic system are evaluated, and the influence of key parameters on the performance of the CCES and the CSC is discussed. The results indicate that the addition of an SE significantly improves the operational flexibility of the coupled system. Underrated thermal load conditions, schemes 2 and 3 can reduce the electric load by 68.56 MW and 50.56 MW, respectively, thus expanding the feasible operating range and enhancing thermoelectric decoupling capability. Increasing the hot water tank temperature improves the system power efficiency from 48.84% to 66.84%, the energy storage density from 1.07 kWh/m3 to 1.47 kWh/m3, and the power change ratio from 55.85% to 57.82%. Considering overall energy consumption, scheme 2 emerges as the optimal approach. The proposed method promotes flexible transformation of CHP units and provides a technical reference for integrating thermoelectric units with CCES technology.

Key words: combined heating and power unit, thermoelectric decoupling, compressed carbon dioxide energy storage, steam ejector, thermodynamic analysis

中图分类号: