[1] |
胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15.
|
|
HU A G. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology (Social Sciences Edition), 2021, 21(3): 1-15.
|
[2] |
熊超, 李新创, 李冰. 双碳目标下的钢铁节能理念创新与能源结构重塑探讨[J]. 中国冶金, 2021, 31(9): 59-63. DOI: 10.13228/j.boyuan.issn1006-9356.20210298.
|
|
XIONG C, LI X C, LI B. Discussion on steel energy-saving concept innovation and energy structure reconstruction under "double carbon" target[J]. China Metallurgy, 2021, 31(9): 59-63. DOI: 10.13228/j.boyuan.issn1006-9356.20210298.
|
[3] |
魏一鸣, 余碧莹, 唐葆君, 等. 中国碳达峰碳中和时间表与路线图研究[J]. 北京理工大学学报(社会科学版), 2022, 24(4): 13-26. DOI: 10.15918/j.jbitss1009-3370.2022.1165.
|
|
WEI Y M, YU B Y, TANG B J, et al. Roadmap for achieving China's carbon peak and carbon neutrality pathway[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2022, 24(4): 13-26. DOI: 10.15918/j.jbitss1009-3370.2022.1165.
|
[4] |
路哲. 我国工业余热回收利用技术现状分析[J]. 装备制造技术, 2019(12): 204-206.
|
|
LU Z. Analysis on current situation of industrial waste heat recovery in China[J]. Equipment Manufacturing Technology, 2019(12): 204-206.
|
[5] |
何雅玲. 热储能技术在能源革命中的重要作用[J]. 科技导报, 2022, 40(4): 1-2.
|
|
HE Y L. The important role of thermal energy storage technology in the energy revolution[J]. Science & Technology Review, 2022, 40(4): 1-2.
|
[6] |
姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. DOI: 10.19799/j.cnki.2095-4239. 2021.0538.
|
|
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. DOI: 10.19799/j.cnki.2095-4239.2021.0538.
|
[7] |
FERNANDEZ A I, MARTÍNEZ M, SEGARRA M, et al. Selection of materials with potential in sensible thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2010, 94(10): 1723-1729. DOI: 10.1016/j.solmat.2010.05.035.
|
[8] |
KHARE S, DELL'AMICO M, KNIGHT C, et al. Selection of materials for high temperature sensible energy storage[J]. Solar Energy Materials and Solar Cells, 2013, 115: 114-122. DOI: 10. 1016/j.solmat.2013.03.009.
|
[9] |
LAING D, LEHMANN D, FIß M, et al. Test results of concrete thermal energy storage for parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2009, 131(4): 041007. DOI: 10.1115/1.3197844.
|
[10] |
SKINNER J E, STRASSER M N, BROWN B M, et al. Testing of high-performance concrete as a thermal energy storage medium at high temperatures[J]. Journal of Solar Energy Engineering, 2014, 136(2): 021004. DOI: 10.1115/1.4024925.
|
[11] |
RAHJOO M, GORACCI G, MARTAUZ P, et al. Geopolymer concrete performance study for high-temperature thermal energy storage (TES) applications[J]. Sustainability, 2022, 14(3): 1937. DOI: 10.3390/su14031937.
|
[12] |
STEINMANN W D, ODENTHAL C, ECK M. System analysis and test loop design for the CellFlux storage concept[J]. Energy Procedia, 2014, 49: 1024-1033. DOI: 10.1016/j.egypro.2014.03.110.
|
[13] |
EGGERS J R, VON DER HEYDE M, THAELE S H, et al. Design and performance of a long duration electric thermal energy storage demonstration plant at megawatt-scale[J]. Journal of Energy Storage, 2022, 55: 105780. DOI: 10.1016/j.est.2022.105780.
|
[14] |
ODENTHAL C, STEINMANN W D, ZUNFT S. Analysis of a horizontal flow closed loop thermal energy storage system in pilot scale for high temperature applications-Part I: Experimental investigation of the plant[J]. Applied Energy, 2020, 263: 114573. DOI: 10.1016/j.apenergy.2020.114573.
|
[15] |
王艳, 白凤武, 杨贝, 等. 高温显热-潜热复合储热系统传热特性研究[J]. 储能科学与技术, 2017, 6(4): 719-725.
|
|
WANG Y, BAI F W, YANG B, et al. Heat transfer behavior of a combined sensible-latent thermal energy storage system for high temperature appilications[J]. Energy Storage Science and Technology, 2017, 6(4): 719-725.
|
[16] |
孙守斌, 姚华, 刘常鹏, 等. 钢铁行业中低温烟气余热相变储热装置特性分析[J]. 储能科学与技术, 2020, 9(3): 730-734. DOI: 10.19799/j.cnki.2095-4239.2020.0051.
|
|
SUN S B, YAO H, LIU C P, et al. Characteristics analysis of the phase change thermal storage equipment for medium and low temperature flue gas from steel industry[J]. Energy Storage Science and Technology, 2020, 9(3): 730-734. DOI: 10.19799/j.cnki.2095-4239.2020.0051.
|
[17] |
肖刚, 祝培旺, 甘晟池. 锅炉烟气储热系统: CN119333847A[P]. 2025-01-21.
|
|
XIAO G, ZHU P W, GAN S C. Boiler flue gas heat storage system: CN119333847A[P]. 2025-01-21.
|
[18] |
陈久林, 薛晓迪, 邢至珏, 等. 一种储热装置: CN116222279A[P]. 2023-06-06.
|
|
CHEN J L, XUE X D, XING Z J, et al. Heat storage device: CN116222279A[P]. 2023-06-06.
|
[19] |
KOUSKSOU T, STRUB F, CASTAING LASVIGNOTTES J, et al. Second law analysis of latent thermal storage for solar system[J]. Solar Energy Materials and Solar Cells, 2007, 91(14): 1275-1281. DOI: 10.1016/j.solmat.2007.04.029.
|
[20] |
MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. DOI: 10.1016/0894-1777(88)90043-X.
|