• XXXX •
王锦峰1(), 刘悦2, 钟鸿杰1, 曹峻鸣2(
), 吴兴隆1,2(
)
收稿日期:
2025-02-22
修回日期:
2022-03-18
通讯作者:
曹峻鸣,吴兴隆
E-mail:wangjinfeng123@nenu.edu.cn;jmcao@nenu.edu.cn;xinglong@nenu.edu.cn
作者简介:
王锦峰(2002—),男,研究生,研究方向为水系钙离子电池电极材料,E-mail:wangjinfeng123@nenu.edu.cn;
基金资助:
Jinfeng WANG1(), Yue LIU2, Hongjie ZHONG1, Junming CAO2(
), Xinglong WU1,2(
)
Received:
2025-02-22
Revised:
2022-03-18
Contact:
Junming CAO, Xinglong WU
E-mail:wangjinfeng123@nenu.edu.cn;jmcao@nenu.edu.cn;xinglong@nenu.edu.cn
摘要:
近年来,电化学储能技术得益于较高的能量密度与良好的可持续性优势,在智能电网与新能源电动汽车等领域中得到了广泛的研究与应用。其中,电极材料作为电化学储能器件重要的组成部分,对于实现优异的电化学性能具有决定性作用。在不同的电极材料体系中,钼(Mo)基材料由于中心Mo元素多变的价态、晶体结构的可调性以及较高的可逆容量,是颇具潜力的电极材料体系之一。Mo基材料主要包括氧化物(如MoO2、MoO3)、硫族化合物(如MoS2、MoSe2、MoTe2)、碳化物、氮化物、磷化物、过渡金属钼酸盐以及钼基复合材料等。然而,由于Mo基材料在电化学反应过程中所表现出的载流子迟缓的动力学行为与体积膨胀,从而导致较差的循环稳定性,进一步限制了Mo基电极材料的商业化应用。基于此,研究人员通常采取如微/纳米级结构、碳基质杂化、异质原子掺杂与复合结构设计等策略以优化Mo基材料的电化学性能。本文基于Mo基材料的研究现状,主要针对不同类型Mo基电极材料的合成方法、结构特性、改性策略、载流子存储机理及其“构效”关系等方面进行了系统地总结,并对Mo基电极材料的晶体结构设计方向与应用前景进行了展望,以期为新型高性能Mo基电极材料及其在新型电化学储能技术中的发展提供参考。
中图分类号:
王锦峰, 刘悦, 钟鸿杰, 曹峻鸣, 吴兴隆. 钼基电极材料的电化学储能应用进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0157.
Jinfeng WANG, Yue LIU, Hongjie ZHONG, Junming CAO, Xinglong WU. Recent advances on structural design, synthesis and electrochemical applications of Mo-based electrode materials[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0157.
图5
(a) MnMoO4 的晶体结构[57];(b) CoMoO4@CoP/BGA中赝电容反应机理示意图;(c) 不同扫描速率下的表面电容贡献比[59];(d) Ni/Ni3S2@NiMoO4//AC全电池在不同电流密度下的充放电特性[60];(e) 不同壳厚的NiCo2O4@NiMoO4/CC的制作工艺示意图[61]注:Ni/Ni3S2@NiMoO4//AC cell at different current densities[60]; (e) Schematic fabrication processes of NiCo2O4@NiMoO4/CC with different shell thickness[61]"
表1
典型钼基材料的合成方法与电化学性能"
材料 | 合成方法 | 初始容量/电流密度 | 应用范围 |
---|---|---|---|
α-MoO3/SWCNH[ | 微波水热 | 654 mAh/g @ 1 C | 锂离子电池 |
MoS2 foam[ | 电流体动力学(EHD)打印 | 1515 mAh/g @ 1 A/g | 锂离子电池 |
2H-MoTe2[ | 固相 | 432 mAh/g @ 1 A/g | 锂离子电池 |
MoO2/MoS2@NC[ | 空气热活化 | 748 mAh/g @ 1 A/g | 锂离子电池 |
MoO2/Mo2C/C[ | 碳化 | 482.5 mAh/g @ 1 A/g | 锂离子电池 |
MoSe2/MoC/N–C[ | 退火-硒化 | 648 mAh/g @ 1 A/g | 锂离子电池 |
N,P-rGO/h-MoO2[ | 水热 | 824.6 mAh/g / 1 C | 锂硫电池 |
Mo2C/C[ | 溶剂热-退火 | 946.7 mAh/g @ 1 C | 锂硫电池 |
MoN@CMK-5[ | 熔融法 | 853.3 mAh/g @ 1 C | 锂硫电池 |
DMcT-MoO3[ | 溶剂热 | 205 mAh/g @ 1 A/g | 钠离子电池 |
N-MoS2/C@SiOC[ | 热解 | 376.1 mAh/g @ 1 A/g | 钠离子电池 |
CoS/MoS2[ | 水热-固态硫化 | 537.4 mAh/g @ 1 A/g | 钠离子电池 |
MoTe2(Blocks)[ | 固相 | 320 mAh/g @ 1 A/g | 钠离子电池 |
Meso-Mo3N2-NWs[ | 共沉淀法 | 272 mAh/g @ 1 A/g | 钠离子电池 |
MoO3-MoS2[ | 水热-气相沉积 | 401 mAh/g @ 1 A/g | 钠离子电池 |
MoSe2 HNRAs[ | 沉积-硒化 | 330 mAh/g @ 1 A/g | 铝离子电池 |
MoP@NPCNFs[ | 静电纺丝 | 230 mAh/g @ 1 A/g | 钾离子电池 |
MoO2@NC[ | 还原-退火 | 103 mAh/g @ 1 A/g | 锌离子电池 |
MoSe2-VSe[ | 溶剂热-退火 | 50.8 mAh/g @ 1 A/g | 锌离子电池 |
MoS2/PGF[ | 微流控法 | 633 mF cm-2 @ 1 mA cm-2 | 超级电容器 |
NF@MnMoO4[ | 水热 | 4609 F/g @ 1 A/g | 超级电容器 |
P-MnMoO4[ | 水热-气-固反应 | 2.112 F cm-2 @ 1 mA cm-2 | 超级电容器 |
CoMoO4@CoP/BGA[ | 溶剂热 | 3056.4 F/g @ 1 A/g | 超级电容器 |
Ni/Ni3S2@NiMoO4[ | 水热 | 1327.3µAh cm-2 @ 2 mA cm-2 | 超级电容器 |
NiCo2O4@NiMoO4[ | 水热-退火 | 2.522F cm-2 @ 1 mA cm-2 | 超级电容器 |
MoS2/MoO3 @graphite[ | 微波固相法 | 268.5 F/g @ 1 A/g | 超级电容器 |
MoSe2-Mo2C[ | 水热 | 850 F/g @ 1 A/g | 超级电容器 |
Mo2C/Mo2N[ | 水热-退火 | 2050.2 F/g @ 1 A/g | 超级电容器 |
1 | RONG Y, SANG J, CHE L, et al. Designing electrolytes for aqueous electrocatalytic CO2 reduction [J]. Acta Physico Chimica Sinica, 2023, 39(5): 2212027. |
2 | WAN J, WANG R, LIU Z, et al. A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries [J]. ACS Nano, 2023, 17(2): 1610-1621. |
3 | KOVENTHAN C, LO A-Y. Morphology engineering of novel MnMoO4@NiMoO4 core–shell nanostructure as an electrode material for asymmetric supercapacitor device [J]. Chemical Engineering Journal, 2024, 485: 149950. |
4 | LI J, YANG Q-Q, HU Y-X, et al. Design of lamellar Mo2C nanosheets assembled by Mo2C nanoparticles as an anode material toward excellent sodium-ion capacitors [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18375-18383. |
5 | PAN H, WANG C, QIU M, et al. Mo doping and electrochemical activation Co‐induced vanadium composite as high‐rate and long‐life anode for Ca‐ion batteries [J]. Energy & Environmental Materials, 2024, 7(5): e12690. |
6 | RUAN Q, QIAN Y, XUE M, et al. Emerging two-dimensional Mo-based materials for rechargeable metal-ion batteries: Advances and perspectives [J]. Journal of Energy Chemistry, 2024, 89: 487-518. |
7 | CHEN M, WANG Z, WANG Y, et al. Sodium-ion storage mechanisms and design strategies of molybdenum-based materials: A review [J]. Applied Materials Today, 2021, 23: 100985. |
8 | JIANG G, QIU Y, LU Q, et al. Mesoporous thin-wall molybdenum nitride for fast and stable Na/Li storage [J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41188-41195. |
9 | JIANG G, XU F, YANG S, et al. Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries [J]. Journal of Power Sources, 2018, 395: 77-84. |
10 | YIN Y, FAN L, ZHANG Y, et al. MoP hollow nanospheres encapsulated in 3D reduced graphene oxide networks as high rate and ultralong cycle performance anodes for sodium-ion batteries [J]. Nanoscale, 2019, 11(15): 7129-7134. |
11 | CHEN A, ZHAO C, GUO Z, et al. Fast-growing multifunctional ZnMoO4 protection layer enable dendrite-free and hydrogen-suppressed Zn anode [J]. Energy Storage Materials, 2022, 44: 353-359. |
12 | XIE F, CHOY W C H, WANG C, et al. Low‐temperature solution‐processed hydrogen molybdenum and vanadium bronzes for an efficient hole‐transport layer in organic electronics [J]. Advanced Materials, 2013, 25(14): 2051-2055. |
13 | FREUND C, ABRANTES M, KüHN F E. Monomeric cyclopentadiene molybdenum oxides and their carbonyl precursors as epoxidation catalysts [J]. Journal of Organometallic Chemistry, 2006, 691(18): 3718-3729. |
14 | LI H, MCRAE L, FIRBY C J, et al. Rechargeable aqueous electrochromic batteries utilizing Ti‐substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes [J]. Advanced Materials, 2019, 31(15): 1807065. |
15 | JIANG Y, WANG Y, NI J, et al. Molybdenum‐based materials for sodium‐ion batteries [J]. InfoMat, 2021, 3(4): 339-352. |
16 | RESSLER T. Bulk structural investigation of the reduction of MoO3 with propene and the oxidation of MoO2 with oxygen [J]. Journal of Catalysis, 2002, 210(1): 67-83. |
17 | LI J, WANG C, JI C, et al. Molybdenum-based materials for alkali metal-ion batteries: Recent advances and perspectives [J]. Coordination Chemistry Reviews, 2024, 506: 215725. |
18 | WANG B, YAN J, ZHANG Y, et al. In situ carbon insertion in laminated molybdenum dioxide by interlayer engineering toward ultrastable "rocking‐chair" zinc‐ion batteries [J]. Advanced Functional Materials, 2021, 31(30): 2102827. |
19 | LIU R, FENG J, TANG R, et al. Long-range disordered MoO2 with rich oxygen vacancies for high-rate and durable lithium storage [J]. Chemical Engineering Journal, 2023, 468: 143766. |
20 | KIM W I, YEON J S, PARK H, et al. Polyoxometalate derived hierarchically structured N,P-Codoped reduced graphene oxide/MoO2 composites for high performance lithium–sulfur batteries [J]. Composites Part B: Engineering, 2023, 264: 110886. |
21 | FAN H, LI X, ZHOU J, et al. Realizing the long lifespan of molybdenum trioxide in aqueous aluminum ion batteries through potential regulation [J]. Renewables, 2023, 1(4): 455-464. |
22 | LEE S H, KIM Y H, DESHPANDE R, et al. Reversible lithium‐ion insertion in molybdenum oxide nanoparticles [J]. Advanced Materials, 2008, 20(19): 3627-3632. |
23 | SAHU S R, RIKKA V R, HARIDOSS P, et al. A novel α‐MoO3/single‐walled carbon nanohorns composite as high‐performance anode material for fast‐charging lithium‐ion battery [J]. Advanced Energy Materials, 2020, 10(36): 2001627. |
24 | WANG B, ANG E H, YANG Y, et al. Interlayer engineering of molybdenum trioxide toward high‐capacity and stable sodium ion half/full batteries [J]. Advanced Functional Materials, 2020, 30(28): 2001708. |
25 | XU T, XU Z, YAO T, et al. Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide [J]. Nature Communications, 2023, 14(1): 8360. |
26 | LAKSHMY S, MONDAL B, KALARIKKAL N, et al. Recent developments in synthesis, properties, and applications of 2D Janus MoSSe and MoSe S(1-) alloys [J]. Advanced Powder Materials, 2024, 3(4): 100204. |
27 | DAI H, WANG L, ZHAO Y, et al. Recent advances in molybdenum-based materials for lithium-sulfur batteries [J]. Research, 2021, 2021: 5130420. |
28 | LIU Y, WANG H, CHENG L, et al. TiS2 nanoplates: A high-rate and stable electrode material for sodium ion batteries [J]. Nano Energy, 2016, 20: 168-175. |
29 | YANG W, WANG J, SI C, et al. Tungsten diselenide nanoplates as advanced lithium/sodium ion electrode materials with different storage mechanisms [J]. Nano Research, 2017, 10(8): 2584-2598. |
30 | ZHAI W, LI Z, WANG Y, et al. Phase engineering of nanomaterials: Transition metal dichalcogenides [J]. Chemical Reviews, 2024, 124(7): 4479-4539. |
31 | WANG W, BI H, LI C, et al. Edge-terminated few-layer MoS2 nanoflakes supported on TNAs@C with enhanced electrocatalysis activity for iodine reduction reaction [J]. Materials Today Nano, 2019, 6: 100033. |
32 | ZHOU Y, LIU Y, ZHANG M, et al. Rationally designed hierarchical N, P co-doped carbon connected 1T/2H-MoS2 heterostructures with cooperative effect as ultrafast and durable anode materials for efficient sodium storage [J]. Chemical Engineering Journal, 2022, 433: 133778. |
33 | WEI X, LIN C-C, WU C, et al. Three-dimensional hierarchically porous MoS2 foam as high-rate and stable lithium-ion battery anode [J]. Nature Communications, 2022, 13(1): 6006. |
34 | WANG Y, WANG K, ZHANG C, et al. Solvent‐exchange strategy toward aqueous dispersible MoS2 nanosheets and their nitrogen‐rich carbon sphere nanocomposites for efficient lithium/sodium ion storage [J]. Small, 2019, 15(45): 1903816. |
35 | LIM H, YU S, CHOI W, et al. Hierarchically designed nitrogen-doped MoS2/silicon oxycarbide nanoscale heterostructure as high-performance sodium-ion battery anode [J]. ACS Nano, 2021, 15(4): 7409-7420. |
36 | HE Y, LIU C, XIE Z, et al. Construction of cobalt sulfide/molybdenum disulfide heterostructure as the anode material for sodium ion batteries [J]. Advanced Composites and Hybrid Materials, 2023, 6(3): 85. |
37 | WU X, LIU H, GENG Y, et al. Interface-engineered molybdenum disulfide/porous graphene microfiber for high electrochemical energy storage [J]. Energy Storage Materials, 2023, 54: 30-39. |
38 | CHEN X, ZHANG A, ZOU H, et al. Defect engineering modulated MoSe2 cathode achieves highly effective photo-responsive zinc ion battery [J]. Energy Storage Materials, 2024, 70: 103457. |
39 | LI Y, WANG M, SUN J. Molecular engineering strategies toward molybdenum diselenide design for energy storage and conversion [J]. Advanced Energy Materials, 2022, 12(45): 2202600. |
40 | AI Y, WU S-C, WANG K, et al. Three-dimensional molybdenum diselenide helical nanorod arrays for high-performance aluminum-ion batteries [J]. ACS Nano, 2020, 14(7): 8539-8550. |
41 | DU Y, ZHANG B, ZHOU W, et al. Laser-radiated tellurium vacancies enable high-performance telluride molybdenum anode for aqueous zinc-ion batteries [J]. Energy Storage Materials, 2022, 51: 29-37. |
42 | KIM E-K, YOON S J, BUI H T, et al. Epitaxial electrodeposition of single crystal MoTe2 nanorods and Li+ storage feasibility [J]. Journal of Electroanalytical Chemistry, 2020, 878: 114672. |
43 | PANDA M R, RAJ K A, GHOSH A, et al. Blocks of molybdenum ditelluride: A high rate anode for sodium-ion battery and full cell prototype study [J]. Nano Energy, 2019, 64: 103951. |
44 | PANDA M R, GANGWAR R, MUTHURAJ D, et al. High performance lithium‐ion batteries using layered 2H‐MoTe2 as anode [J]. Small, 2020, 16(38): 2002669. |
45 | YANG Y, ZHONG Y, SHI Q, et al. Electrocatalysis in lithium sulfur batteries under lean electrolyte conditions [J]. Angewandte Chemie International Edition, 2018, 57(47): 15549-15552. |
46 | ZHOU X, LI L, YANG J, et al. Cobalt and molybdenum carbide nanoparticles grafted on nitrogen‐doped carbon nanotubes as efficient chemical anchors and polysulfide conversion catalysts for lithium‐sulfur batteries [J]. ChemElectroChem, 2020, 7(18): 3767-3775. |
47 | LI W, CHEN K, XU Q, et al. Mo2C/C hierarchical double‐shelled hollow spheres as sulfur host for advanced Li‐S batteries [J]. Angewandte Chemie International Edition, 2021, 60(39): 21512-21520. |
48 | HU T, HU Y, YAO T, et al. Freestanding molybdenum carbide nanowires electrode for high specific capacity and superior rate performance Li–CO2 batteries [J]. Energy Storage Materials, 2024, 72: 103740. |
49 | LIU F, HE J, LIU X, et al. MoC nanoclusters anchored Ni@N‐doped carbon nanotubes coated on carbon fiber as three‐dimensional and multifunctional electrodes for flexible supercapacitor and self‐heating device [J]. Carbon Energy, 2020, 3(1): 129-141. |
50 | JOSHI S, WANG Q, PUNTAMBEKAR A, et al. Facile synthesis of large area two-dimensional layers of transition-metal nitride and their use as insertion electrodes [J]. ACS Energy Letters, 2017, 2(6): 1257-1262. |
51 | JIANG Y, DONG J, TAN S, et al. Surface pseudocapacitance of mesoporous Mo3N2 nanowire anode toward reversible high-rate sodium-ion storage [J]. Journal of Energy Chemistry, 2021, 55: 295-303. |
52 | LIU Z, LIAN R, WU Z, et al. Ordered dual-channel carbon embedded with molybdenum nitride catalytically induced high-performance lithium-sulfur battery [J]. Chemical Engineering Journal, 2022, 431: 134163. |
53 | YI Z, LIU Y, LI Y, et al. Flexible membrane consisting of MoP ultrafine nanoparticles highly distributed inside N and P codoped carbon nanofibers as high‐performance anode for potassium‐ion batteries [J]. Small, 2019, 16(2): 1905301. |
54 | CHEN D, CHEN C, YU H, et al. Formation of N‐doped carbon nanofibers decorated with MoP nanoflakes for dendrite‐free lithium metal anode [J]. Advanced Functional Materials, 2024, 34(38): 2402951. |
55 | ZANG M, XU N, CAO G, et al. Cobalt molybdenum oxide derived high-performance electrocatalyst for the hydrogen evolution reaction [J]. ACS Catalysis, 2018, 8(6): 5062-5069. |
56 | XIA W, LUAN X, ZHANG W, et al. Sulfuration of hierarchical Mn-doped NiCo LDH heterostructures as efficient electrocatalyst for overall water splitting [J]. International Journal of Hydrogen Energy, 2023, 48(71): 27631-27641. |
57 | XU Z, SUN S, HAN Y, et al. High-energy-density asymmetric supercapacitor based on a durable and stable manganese molybdate nanostructure electrode for energy storage systems [J]. ACS Applied Energy Materials, 2020, 3(6): 5393-5404. |
58 | LIU Y, LI Y, LIU Z, et al. Uniform P-doped MnMoO4 nanosheets for enhanced asymmetric supercapacitors performance [J]. Molecules, 2024, 29(9): 1988. |
59 | JIANG J, ZHOU W, LI W, et al. Construction of electron-interactive CoMoO4 @ CoP core–shell structure on boron-doped graphene aerogel as strongly interface coupled hybrid electrodes for high flexible supercapacitor [J]. Chemical Engineering Journal, 2024, 496: 154123. |
60 | CHEN F, JI S, LIU Q, et al. Rational design of hierarchically core–shell structured Ni3S2@NiMoO4 nanowires for electrochemical energy storage [J]. Small, 2018, 14(27): 1800791. |
61 | ZHANG H, LU C, HOU H, et al. Tuning the electrochemical performance of NiCo2O4@NiMoO4 core-shell heterostructure by controlling the thickness of the NiMoO4 shell [J]. Chemical Engineering Journal, 2019, 370: 400-408. |
62 | WANG C, LI X, SONG H, et al. In‐plane heterostructured MoN/MoC nanosheets with enhanced interfacial charge transfer for superior pseudocapacitive storage [J]. Advanced Functional Materials, 2023, 34(12): 2311040. |
63 | SUN Y, ZHOU Y, ZHU Y, et al. In-situ synthesis of petal-like MoO2@MoN/NF heterojunction as both an advanced binder-free anode and an electrocatalyst for lithium ion batteries and water splitting [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9153-9163. |
64 | TIAN Y, YANG X, NAUTIYAL A, et al. One-step microwave synthesis of MoS2/MoO3@graphite nanocomposite as an excellent electrode material for supercapacitors [J]. Advanced Composites and Hybrid Materials, 2019, 2(1): 151-161. |
65 | SUN X, YANG J, CHEN Y, et al. Interconnected MoO2/MoS2@NC nanosheets as anodes with high-rate and long-life for lithium-ion and sodium-ion batteries [J]. Chemical Engineering Journal, 2024, 495: 153418. |
66 | YU L, TAO X, SUN D, et al. In situ phase transformation to form MoO3-MoS2 heterostructure with enhanced printable sodium ion storage [J]. Advanced Functional Materials, 2024, 34(29): 2311471. |
67 | KOU Z, WANG T, GU Q, et al. Rational design of holey 2D nonlayered transition metal carbide/nitride heterostructure nanosheets for highly efficient water oxidation [J]. Advanced Energy Materials, 2019, 9(16): 1803768. |
68 | HOU C, WANG J, DU W, et al. One-pot synthesized molybdenum dioxide–molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage [J]. Journal of Materials Chemistry A, 2019, 7(22): 13460-13472. |
69 | CHEN J, LUO Y, ZHANG W, et al. Tuning interface bridging between MoSe2 and three-dimensional carbon framework by incorporation of MoC intermediate to boost lithium storage capability [J]. Nano-Micro Letters, 2020, 12(1): 1-13. |
70 | VIKRAMAN D, HUSSAIN S, KARUPPASAMY K, et al. Engineering the novel MoSe2-Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications [J]. Applied Catalysis B: Environmental, 2020, 264: 118531. |
71 | GAO Y, ZHANG S, XU L, et al. Fast charge transport motivated by tunable Mo2C/Mo2N high-quality heterointerface for superior pseudocapacitive storage [J]. Journal of Energy Chemistry, 2023, 83: 465-477. |
[1] | 陈晔, 李晋, 吴候福, 张少禹, 储玉喜, 卓萍. 大容量储能电池模组热失控传播行为与燃爆风险分析[J]. 储能科学与技术, 2024, 13(8): 2803-2812. |
[2] | 寇正, 王真龙. 储能设备在电力物联网领域中的作用效果分析[J]. 储能科学与技术, 2024, 13(8): 2785-2787. |
[3] | 许利君, 许利红, 宋方宇轩. 电化学储能电站的系统故障监测与诊断分析[J]. 储能科学与技术, 2024, 13(8): 2788-2790. |
[4] | 张楚, 陈栋才, 陈湘萍, 蔡永翔. 多应用场景下储能最优配置经济性效益分析[J]. 储能科学与技术, 2024, 13(6): 2078-2088. |
[5] | 杨建航, 冯文婷, 韩俊伟, 魏欣茹, 马晨宇, 毛常明, 智林杰, 孔德斌. 锂/钠-氯二次电池的最新进展——从材料构建到性能评估[J]. 储能科学与技术, 2024, 13(6): 1824-1834. |
[6] | 刘青宜. 钠离子电池的储能机制与性能提升策略[J]. 储能科学与技术, 2024, 13(6): 1871-1873. |
[7] | 曾坤, 郑晓妍, 龚慧玲, 邹博, 陈凯, 晏忠钠. 基于锂负极的液态金属电池研究进展[J]. 储能科学与技术, 2024, 13(1): 299-310. |
[8] | 闫苏, 钟芳芳, 刘俊伟, 丁美, 贾传坤. 高能量密度液流电池关键材料与先进表征[J]. 储能科学与技术, 2024, 13(1): 143-156. |
[9] | 欧阳意梅, 赵蒙蒙, 钟贵明, 彭章泉. 电化学储能界面的核磁共振谱学研究方法[J]. 储能科学与技术, 2024, 13(1): 157-166. |
[10] | 张力菠, 王格格. 电化学储能电池技术主题识别、演化及风险分析[J]. 储能科学与技术, 2023, 12(8): 2680-2692. |
[11] | 赵光金, 李博文, 胡玉霞, 董锐锋, 王放放. 退役动力电池梯次利用技术及工程应用概述[J]. 储能科学与技术, 2023, 12(7): 2319-2332. |
[12] | 黄渭彬, 张彪, 范金成, 杨伟, 邹汉波, 陈胜洲. ZIF-8复合PEO基固态电解质的制备与改性研究[J]. 储能科学与技术, 2023, 12(4): 1083-1092. |
[13] | 程志翔, 曹伟, 户波, 程云芳, 李鑫, 姜丽华, 金凯强, 王青松. 储能用大容量磷酸铁锂电池热失控行为及燃爆传播特性[J]. 储能科学与技术, 2023, 12(3): 923-933. |
[14] | 张宣梁, 何霆, 朱文龙, 王屾, 曾建华, 徐泉, 牛迎春. 基于多循环特征的储能电池SOH估计模型[J]. 储能科学与技术, 2023, 12(11): 3488-3498. |
[15] | 刘阳, 滕卫军, 谷青发, 孙鑫, 谭宇良, 方知进, 李建林. 规模化多元电化学储能度电成本及其经济性分析[J]. 储能科学与技术, 2023, 12(1): 312-318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||