储能科学与技术

• XXXX •    

钼基电极材料的电化学储能应用进展

王锦峰1(), 刘悦2, 钟鸿杰1, 曹峻鸣2(), 吴兴隆1,2()   

  1. 1.东北师范大学化学学院,吉林 长春 130024
    2.东北师范大学物理学院,吉林 长春 130024
  • 收稿日期:2025-02-22 修回日期:2022-03-18
  • 通讯作者: 曹峻鸣,吴兴隆 E-mail:wangjinfeng123@nenu.edu.cn;jmcao@nenu.edu.cn;xinglong@nenu.edu.cn
  • 作者简介:王锦峰(2002—),男,研究生,研究方向为水系钙离子电池电极材料,E-mail:wangjinfeng123@nenu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金(52302222);吉林省科技厅(20230508177RC);香江学者计划(XJ2024039)

Recent advances on structural design, synthesis and electrochemical applications of Mo-based electrode materials

Jinfeng WANG1(), Yue LIU2, Hongjie ZHONG1, Junming CAO2(), Xinglong WU1,2()   

  1. 1.Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, China
    2.School of Physics, Northeast Normal University, Changchun 130024, Jilin, China
  • Received:2025-02-22 Revised:2022-03-18
  • Contact: Junming CAO, Xinglong WU E-mail:wangjinfeng123@nenu.edu.cn;jmcao@nenu.edu.cn;xinglong@nenu.edu.cn

摘要:

近年来,电化学储能技术得益于较高的能量密度与良好的可持续性优势,在智能电网与新能源电动汽车等领域中得到了广泛的研究与应用。其中,电极材料作为电化学储能器件重要的组成部分,对于实现优异的电化学性能具有决定性作用。在不同的电极材料体系中,钼(Mo)基材料由于中心Mo元素多变的价态、晶体结构的可调性以及较高的可逆容量,是颇具潜力的电极材料体系之一。Mo基材料主要包括氧化物(如MoO2、MoO3)、硫族化合物(如MoS2、MoSe2、MoTe2)、碳化物、氮化物、磷化物、过渡金属钼酸盐以及钼基复合材料等。然而,由于Mo基材料在电化学反应过程中所表现出的载流子迟缓的动力学行为与体积膨胀,从而导致较差的循环稳定性,进一步限制了Mo基电极材料的商业化应用。基于此,研究人员通常采取如微/纳米级结构、碳基质杂化、异质原子掺杂与复合结构设计等策略以优化Mo基材料的电化学性能。本文基于Mo基材料的研究现状,主要针对不同类型Mo基电极材料的合成方法、结构特性、改性策略、载流子存储机理及其“构效”关系等方面进行了系统地总结,并对Mo基电极材料的晶体结构设计方向与应用前景进行了展望,以期为新型高性能Mo基电极材料及其在新型电化学储能技术中的发展提供参考。

关键词: Mo基材料, 电化学储能, 电极材料设计, 材料合成

Abstract:

In recent years, electrochemical energy storage technology has garnered extensive research and application in fields such as smart grids and new energy electric vehicles, owing to its high energy density and excellent sustainability advantages benefits. Electrode materials are crucial components of electrochemical energy storage devices, significantly influencing the output electrochemical performance. Molybdenum (Mo)-based materials have emerged as a highly promising class due to the variable valence states of the central Mo element, the tunability of crystal structures, and their high reversible capacity. Mo-based materials mainly include oxides (such as MoO2 and MoO3), chalcogenides (such as MoS2, MoSe2, and MoTe2), carbides, nitrides, phosphides, transition metal molybdates, and Mo-based composites. However, the sluggish carrier diffusion kinetics and volume expansion exhibited by Mo-based materials during electrochemical reactions, often result in poor cyclic stability, further limiting their commercialization as electrode materials. To address these challenges, researchers have adopted strategies such as micro/nanoscale structural regulation, carbon matrix hybridization, heteroatom doping, and composite integration design to optimize the electrochemical performance of Mo-based materials. Based on the current research status of Mo-based materials, our review systematically summarizes the synthesis methods, structural characterization, modification strategies, carrier storage mechanisms, and the "structure-properties" relationships of different types of Mo-based electrode materials. Furthermore, the future perspectives for crystal structure design and application prospects of Mo-based electrode materials are proposed, aiming to provide insights for the development of novel high-performance Mo-based electrode materials and their potentials in advanced electrochemical energy storage technologies.

Key words: Molybdenum-based materials, Electrochemical energy storage, Electrode Materials Design,Materials synthesis

中图分类号: