储能科学与技术

• •    

高效甲醇燃料电池技术研究进展

谢峰1(), 孟海军2, 雷宪章3, 李新中4, 丁飞5, 邵志刚1()   

  1. 1.中国科学院大连化学物理研究所,辽宁 大连 116023
    2.军事科学院某所,北京 100141
    3.西南石油大学,四川 成都 610500
    4.苏州大学,江苏 苏州 215021
    5.河北工业大学,天津 300401
  • 收稿日期:2025-04-01 修回日期:2025-04-29
  • 通讯作者: 邵志刚 E-mail:xiefeng0794@dicp.ac.cn;zhgshao@dicp.ac.cn
  • 作者简介:谢峰(1987—),男,博士,副研究员,从事燃料电池系统研究,E-mail:xiefeng0794@dicp.ac.cn

Research Progress of High-Efficiency Methanol Fuel Cell Technology

Feng XIE1(), Haijun MENG2, Xianzhang LEI3, Xinzhong LI4, Fei DING5, Zhigang SHAO1()   

  1. 1.Dalian Institute of Chemical Physics, CAS, Dalian 116023, Liaoning, China
    2.A certain institute, Academy of Military Sciences, Beijing 100141, China
    3.Southwest Petroleum University, Chengdu 610500, Sichuan, China
    4.Soochow University, Suzhou 215021, Jiangsu, China
    5.Hebei University of Technology, Tianjin 300401, China
  • Received:2025-04-01 Revised:2025-04-29
  • Contact: Zhigang SHAO E-mail:xiefeng0794@dicp.ac.cn;zhgshao@dicp.ac.cn

摘要:

甲醇具有成本低、易储运、获取便捷等特点,“液态阳光”甲醇是我国能源结构绿色低碳发展的重要载体。基于甲醇的燃料电池在便携式电源、移动/固定式电站、车船动力等领域有广泛应用前景。本文介绍了各类甲醇燃料电池的类型与特点,从电效率角度分析了甲醇制氢与燃料电池的温度匹配、反应余热利用及发电效率的研究和应用进展。直接甲醇燃料电池功率密度较低、工作温度低、贵金属催化剂载量高,适用于便携式电源。甲醇重整制氢经纯化接氢燃料电池,因重整制氢难以充分利用氢燃料电池的副产热,系统综合电效率受限,但该技术路线成熟度高、小型化前景好,适用于各类电站。甲醇重整高温质子交换膜燃料电池电堆反应温度约200℃,改进传热结构可提高发电余热利用率,从而有望提升系统电效率,但仍需提高高温质子交换膜的寿命,降低催化剂用量。甲醇固体氧化物燃料电池的电堆反应温度高,余热可充分用于甲醇水溶液汽化和重整制氢,具有最高的理论电效率,研究重点在阳极抗积碳和改进高温热传导结构。最后本文总结各类甲醇燃料电池的热利用特点,提出了“定温度、调效率、强耦合”的燃料电池系统设计原则,以提高甲醇燃料电池的综合系统电效率。

关键词: 甲醇, 燃料电池, 能量效率, 温度, 热利用

Abstract:

Methanol, with its advantages of low cost, easy storage and transportation, and wide availability, serves as a critical carrier for China's green and low-carbon energy transition and is often referred to as "liquid sunlight." Methanol-based fuel cells demonstrate broad application prospects in portable power systems, mobile/fixed power stations, and vehicle/ship propulsion. This paper introduces the types and characteristics of various methanol fuel cells and analyzes research and application progress in terms of electrical efficiency, focusing on temperature matching between methanol reforming and fuel cell operation, waste heat utilization, and power generation efficiency. Direct methanol fuel cells (DMFCs), which exhibit low power density, low operating temperatures, and high noble metal catalyst loading, are primarily suitable for portable power applications. Methanol reforming coupled with hydrogen fuel cells, despite its high technological maturity and strong potential for miniaturization, suffers from limited system efficiency due to the underutilization of waste heat from the fuel cell. High-temperature proton exchange membrane fuel cells (HT-PEMFCs), operating at around 200°C, can improve waste heat recovery efficiency and thus enhance system efficiency through optimized thermal management, though challenges remain in extending membrane lifespan and reducing catalyst usage. Methanol-fed solid oxide fuel cells (SOFCs), which operate at even higher temperatures, achieve the highest theoretical efficiency by fully utilizing waste heat for methanol/water vaporization and reforming, with current research focusing on carbon-resistant anodes and improved thermal conduction structures. Finally, this paper summarizes the thermal utilization characteristics of different methanol fuel cells and proposes a system design principle of "fixed temperature, adjustable efficiency, and strong thermal coupling" to maximize overall system efficiency.

Key words: methanol, fuel cell, energy efficiency, temperature, thermal recycling

中图分类号: