储能科学与技术

• •    

基于多尺度特征融合的锂离子电池早期剩余使用寿命预测

方枷云1(), 贾建芳1,2()   

  1. 1.中北大学电气与控制工程学院,山西省 太原 0. 0051
    2.高能电池材料与器件山西省重点实验室,山西省 太原 030051
  • 收稿日期:2025-05-26 修回日期:2025-06-29
  • 通讯作者: 贾建芳 E-mail:330678689@qq.com;jiajianfang@nuc.edu.cn
  • 作者简介:方枷云(2001—),女,硕士研究生,研究方向为锂离子电池剩余使用寿命预测,E-mail:330678689@qq.com
  • 基金资助:
    国家自然科学基金(72071183);高能电池材料与器件山西省重点实验室开放基金(2022HPBMD01002)

Early Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Multi-Scale Feature Fusion

Jiayun FANG1(), Jianfang JIA1,2()   

  1. 1.School of Electrical and Control Engineering, North University of China, Taiyuan 030051, Shanxi, China
    2.Shanxi Key Laboratory of High Performance Battery Materials and Devices, Taiyuan 030051, Shanxi, China
  • Received:2025-05-26 Revised:2025-06-29
  • Contact: Jianfang JIA E-mail:330678689@qq.com;jiajianfang@nuc.edu.cn

摘要:

锂离子电池作为关键储能器件,在电动汽车等新能源领域具有广泛应用,其性能衰减与寿命预测对电池健康管理至关重要。早期预测不仅能够优化电池使用策略,更能为故障预警提供重要依据。针对锂离子电池早期数据质量差、退化特征微弱等挑战,本文提出了一种基于多尺度特征融合的锂离子电池早期剩余使用寿命预测的新方法。首先,通过改进蝗虫优化算法 (improved grasshopper optimization algorithm,IGOA) 自适应调整时变滤波经验模态分解 (time-varying filtered empirical mode decomposition,TVF-EMD) 的关键参数,优化早期信号的分解过程,有效提取早期退化特征;其次,通过K均值聚类算法将本征模态函数 (intrinsic mode functions, IMFs) 划分为表征容量退化的高频、中低频、趋势项三类分量,经加权融合后显著增强早期特征表达能力;进而,构建基于鲸鱼迁徙优化算法 (whale migrating algorithm, WMA) 优化的预测模型,对各频段IMFs进行独立预测最终通过多尺度预测结果的融合重构,实现锂电池全寿命周期的退化轨迹预测与剩余使用寿命的预测。基于CALCE和MIT数据集的实验表明,本方法较传统预测模型具有显著优势,均方根误差 (root mean square error, RMSE) 始终低于1.4%,为锂离子电池早期寿命预测提供了可靠解决方案。

关键词: 锂离子电池, 早期剩余使用寿命, 时变滤波经验模态分解, 多尺度预测

Abstract:

As a key energy storage device, lithium-ion batteries are widely used in new energy fields such as electric vehicles, and their performance attenuation and life prediction are crucial for battery health management. Early prediction can not only optimize battery usage strategies, but also provide an important basis for fault warning. In order to solve the challenges of poor early data quality and weak degradation characteristics of lithium-ion batteries, this paper proposes a new method for predicting the early remaining service life of lithium-ion batteries based on multi-scale feature fusion. Firstly, the decomposition process of the early signal was optimized by adaptively adjusting the key parameters of time-varying filtered empirical mode decomposition (TVF-EMD) by the improved grasshopper optimization algorithm (IGOA) to effectively extract the early degradation features. Secondly, the intrinsic mode functions (IMFs) were divided into three types of components: high-frequency, medium-low frequency and trend terms representing capacity degradation by K-means clustering algorithm, which significantly enhanced the early feature expression ability after weighted fusion. Furthermore, a prediction model based on whale migrating algorithm (WMA) optimization was constructed to independently predict IMFs in each frequency band, and finally through the fusion and reconstruction of multi-scale prediction results, the degradation trajectory prediction and remaining service life prediction of lithium battery life cycle were realized. Experiments based on CALCE and MIT datasets show that this method has significant advantages over traditional prediction models, and the root mean square error (RMSE) is always less than 1.4%, which provides a reliable solution for early life prediction of lithium-ion batteries.

Key words: lithium-ion batteries, early remaining useful life, time-varying filtered empirical mode decomposition, multi-scale prediction

中图分类号: