• •
收稿日期:
2025-05-26
修回日期:
2025-06-29
通讯作者:
贾建芳
E-mail:330678689@qq.com;jiajianfang@nuc.edu.cn
作者简介:
方枷云(2001—),女,硕士研究生,研究方向为锂离子电池剩余使用寿命预测,E-mail:330678689@qq.com;
基金资助:
Jiayun FANG1(), Jianfang JIA1,2(
)
Received:
2025-05-26
Revised:
2025-06-29
Contact:
Jianfang JIA
E-mail:330678689@qq.com;jiajianfang@nuc.edu.cn
摘要:
锂离子电池作为关键储能器件,在电动汽车等新能源领域具有广泛应用,其性能衰减与寿命预测对电池健康管理至关重要。早期预测不仅能够优化电池使用策略,更能为故障预警提供重要依据。针对锂离子电池早期数据质量差、退化特征微弱等挑战,本文提出了一种基于多尺度特征融合的锂离子电池早期剩余使用寿命预测的新方法。首先,通过改进蝗虫优化算法 (improved grasshopper optimization algorithm,IGOA) 自适应调整时变滤波经验模态分解 (time-varying filtered empirical mode decomposition,TVF-EMD) 的关键参数,优化早期信号的分解过程,有效提取早期退化特征;其次,通过K均值聚类算法将本征模态函数 (intrinsic mode functions, IMFs) 划分为表征容量退化的高频、中低频、趋势项三类分量,经加权融合后显著增强早期特征表达能力;进而,构建基于鲸鱼迁徙优化算法 (whale migrating algorithm, WMA) 优化的预测模型,对各频段IMFs进行独立预测最终通过多尺度预测结果的融合重构,实现锂电池全寿命周期的退化轨迹预测与剩余使用寿命的预测。基于CALCE和MIT数据集的实验表明,本方法较传统预测模型具有显著优势,均方根误差 (root mean square error, RMSE) 始终低于1.4%,为锂离子电池早期寿命预测提供了可靠解决方案。
中图分类号:
方枷云, 贾建芳. 基于多尺度特征融合的锂离子电池早期剩余使用寿命预测[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0488.
Jiayun FANG, Jianfang JIA. Early Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Multi-Scale Feature Fusion[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0488.
表2
预测模型参数设置"
参数 | WMA-LSTM参数值(IMF-H) | WMA-LSTM参数值(IMF-M&L) | WMA-GRU参数值 (IMF-T) |
---|---|---|---|
Training set | 9.5% | 9.5% | 9.5% |
Test set | 90.5% | 90.5% | 90.5% |
Optimizer | Adam | Adam | Adam |
MaxEpochs | 1100 | 800 | 800 |
InitialLearnRate | 0.001 | 0.001 | 0.001 |
NumHiddenUnits | 78 | 80 | 77 |
LearnRateDropPeriod | 0.9*MaxEpochs | 0.9*MaxEpochs | 0.8*MaxEpochs |
LearnRateDropFactor | 0.2 | 0.2 | 0.01 |
L2Regularization | 0.0001 | 0.01 | 0.0001 |
表5
不同模型预测误差指标"
电池名称 | 误差指标 | Proposed method | LSTM | BiLSTM | GRU | BiGRU | CNN |
---|---|---|---|---|---|---|---|
CS2-35 | RMSE | 0.012795 | 0.017819 | 0.04346 | 0.042771 | 0.051151 | 0.04906 |
MAE | 0.0086551 | 0.011417 | 0.028255 | 0.028971 | 0.035395 | 0.031632 | |
MAPE | 1.4821% | 2.0284% | 5.4588% | 5.4487% | 6.5359% | 6.1526% | |
CS2-36 | RMSE | 0.010392 | 0.017327 | 0.056927 | 0.043013 | 0.041721 | 0.2533 |
MAE | 0.0085821 | 0.010326 | 0.038947 | 0.031266 | 0.027494 | 0.17418 | |
MAPE | 1.6543% | 3.06% | 9.9642% | 7.5431% | 7.3154% | 44.401% | |
CS2-37 | RMSE | 0.012757 | 0.013615 | 0.039321 | 0.02109 | 0.032949 | 0.052894 |
MAE | 0.0084692 | 0.0062687 | 0.024614 | 0.015302 | 0.021141 | 0.034002 | |
MAPE | 1.677% | 1.5531% | 5.0805% | 2.8412% | 4.2859% | 6.7799% | |
CS2-38 | RMSE | 0.013085 | 0.019694 | 0.036283 | 0.023644 | 0.048999 | 0.078381 |
MAE | 0.010647 | 0.0095519 | 0.022347 | 0.016352 | 0.032896 | 0.057991 | |
MAPE | 1.7069% | 2.1601% | 4.45% | 3.0372% | 6.2254% | 10.3913% |
[1] | KHALEGHI S, HOSEN M S, KARIMI D, et al. Developing an online data-driven approach for prognostics and health management of lithium-ion batteries [J]. Applied Energy, 2022, 308: 118348. |
[2] | KIM S, CHOI Y Y, KIM K J, et al. Forecasting state-of-health of lithium-ion batteries using variational long short-term memory with transfer learning [J]. Journal of Energy Storage, 2021, 41: 102893. |
[3] | XIA G, JIA C, SHI Y, et al. Remaining useful life prediction of lithium-ion batteries by considering trend filtering segmentation under fuzzy information granulation [J]. Energy, 2025, 318: 134810. |
[4] | KUMAR R, GOEL V. A study on thermal management system of lithium-ion batteries for electrical vehicles: A critical review [J]. Journal of Energy Storage, 2023, 71: 108025. |
[5] | LAI X, QIAN L, TANG X, et al. Early-stage remaining useful life prediction for lithium-ion batteries based on geometric output construction [J]. Journal of Energy Storage, 2025, 114: 115792. |
[6] | SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery [J]. Applied Energy, 2021, 300: 117346. |
[7] | YANG M, SUN X, LIU R, et al. Predict the lifetime of lithium-ion batteries using early cycles: A review [J]. Applied Energy, 2024, 376: 124171. |
[8] | ELMAHALLAWY M, ELFOULY T, ALOUANI A, et al. A Comprehensive Review of Lithium-Ion Batteries Modeling, and State of Health and Remaining Useful Lifetime Prediction [J]. IEEE Access, 2022, 10: 119040-119070. |
[9] | MA G, WANG Z, LIU W, et al. A two-stage integrated method for early prediction of remaining useful life of lithium-ion batteries [J]. Knowledge-Based Systems, 2023, 259:110012. |
[10] | ZHAO W, DING W, ZHANG S, et al. Enhancing lithium-ion battery lifespan early prediction using a multi-branch vision transformer model [J]. Energy, 2024, 302:131816. |
[11] | 田成文, 孙丙香, 赵鑫泽, 等. 基于数据驱动的锂离子电池快速寿命预测 [J] 储能科学与技术. 2024, 13(09): 3103-3111. |
Tian Chengwen, Sun Bingxiang, Zhao Xinze, et al. Data-driven rapid life prediction of lithium-ion batteries [J] Energy Storage Science and Technology. 2024, 13(09): 3103-3111. | |
[12] | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation [J]. Nature Energy, 2019, 4(5): 383-391. |
[13] | KE Y, JIANG Y, ZHU R, et al. Early Prediction of Knee Point and Knee Capacity for Fast-Charging Lithium-Ion Battery With Uncertainty Quantification and Calibration [J]. IEEE Transactions on Transportation Electrification, 2024, 10(2): 2873-2885. |
[14] | CELIK B, SANDT R, SANTOS L, et al. Prediction of Battery Cycle Life Using Early-Cycle Data, Machine Learning and Data Management [J]. Batteries, 2022, 8: 266. |
[15] | AFSHARI S S, CUI S, XU X, et al. Remaining Useful Life Early Prediction of Batteries Based on the Differential Voltage and Differential Capacity Curves [J]. Ieee Transactions on Instrumentation and Measurement, 2022, 71: 1-9. |
[16] | 李嘉波, 王志璇, 田迪, 等. 变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法 [J] 储能科学与技术. 2024, 1-14. |
Li Jiabo, Wang Zhixuan, Tian Di, et al. Prediction method of remaining service life of lithium-ion battery based on SSA-LSTM combination under variable mode decomposition [J] Energy Storage Science and Technology. 2024, 1-14. | |
[17] | JIA J, WANG K, SHI Y, et al. A multi-scale state of health prediction framework of lithium-ion batteries considering the temperature variation during battery discharge [J]. Journal of Energy Storage, 2021, 42: 103076. |
[18] | WEI M, YE M, ZHANG C, et al. A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling [J]. Energy, 2023, 283: 129086. |
[19] | GAO K, SUN J, HUANG Z, et al. Capacity prediction of lithium-ion batteries based on ensemble empirical mode decomposition and hybrid machine learning [J]. Ionics, 2024, 30(11): 6915-6932. |
[20] | WILLIARD N, HE W, OSTERMAN M, et al. Comparative Analysis of Features for Determining State of Health in Lithium-Ion Batteries [J]. International Journal of Prognostics and Health Management, 2013, 4: 1-7. |
[21] | LI H, LI Z, MO W. A time varying filter approach for empirical mode decomposition [J]. Signal Processing, 2017, 138:146-158. |
[22] | LIU C, WU Y, XU Z, et al. Short-term Power Load Prediction Method for High Voltage Power Cables Based on IGOA-VMD-LSTM-MHSAM; proceedings of the 2024 The 9th International Conference on Power and Renewable Energy (ICPRE), F 20-23 Sept. 2024, 2024 [C].// China: IEEE, 2024: 1685-1690. |
[23] | IKOTUN A M, EZUGWU A E, ABUALIGAH L, et al. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data [J]. Information Sciences, 2023, 622: 178-210. |
[24] | HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory [J]. Neural Computation, 1997, 9(8): 1735-1780. |
[25] | JIAO M, WANG D Q, QIU J L. A GRU-RNN based momentum optimized algorithm for SOC estimation [J]. JOURNAL OF POWER SOURCES, 2020, 459: 228051. |
[26] | GHASEMI M, DERICHE M, TROJOVSKý P, et al. An efficient bio-inspired algorithm based on humpback whale migration for constrained engineering optimization [J]. Results in Engineering, 2025, 25: 104215. |
[1] | 刘佳辉, 卞伟翔, 李大伟. 锂电池石墨复合电极力-电耦合性能原位测量分析[J]. 储能科学与技术, 2025, 14(6): 2240-2247. |
[2] | 陈峥, 多功东, 申江卫, 沈世全, 刘昱, 魏福星. 基于容量增量分析与VMD-GWO-KELM的锂电池健康状态估计[J]. 储能科学与技术, 2025, 14(6): 2476-2487. |
[3] | 阮晶晶, 巫湘坤, 李勇慧, 赵冲冲, 李珅珅, 王童飞, 梁圣杰, 高桂红. 低成本干法石墨厚电极的制备与性能研究[J]. 储能科学与技术, 2025, 14(6): 2248-2255. |
[4] | 韩丹丹, 张武卫, 张亮, 王宗江. 核壳结构LiMn1-y Fe y PO4/C正极材料设计与电化学性能研究[J]. 储能科学与技术, 2025, 14(6): 2215-2222. |
[5] | 王功瑞, 张安萍, 任萱萱, 杨铭哲, 韩宇宁, 吴忠帅. 高电压钴酸锂正极:关键挑战、改性策略与未来展望[J]. 储能科学与技术, 2025, 14(6): 2278-2319. |
[6] | 周海洋, 张振东, 盛雷, 朱泽华, 张晓军, 张春风. 储能用锂电池浸没式热性能调控仿真及热安全实验研究[J]. 储能科学与技术, 2025, 14(5): 1866-1874. |
[7] | 宋海飞, 王乐红, 原义栋, 赵天挺, 陈捷. 基于改进卡尔曼算法的电池采样电压滤波估计[J]. 储能科学与技术, 2025, 14(5): 2106-2113. |
[8] | 曾州岚, 尚雷, 胡志金, 王宗凡, 辛小超, 刘瑛. 高容量锂离子电池正极补锂材料Li5FeO4@C的性能研究[J]. 储能科学与技术, 2025, 14(5): 1875-1883. |
[9] | 莫子鸣, 饶宗昕, 杨建飞, 杨孟昊, 蔡黎明. 锂离子电池过充热失控气热模型构建及关键参数影响分析[J]. 储能科学与技术, 2025, 14(5): 1784-1796. |
[10] | 彭磊, 倪照鹏, 于越, 孙福鹏, 夏修龙, 张鹏, 孙思博. 过充导致三元锂电池电动汽车火灾的试验研究[J]. 储能科学与技术, 2025, 14(4): 1484-1495. |
[11] | 申江卫, 折亦鑫, 舒星, 刘永刚, 魏福星, 夏雪磊, 陈峥. 基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计[J]. 储能科学与技术, 2025, 14(4): 1585-1595. |
[12] | 刘瑞昊, 马小乐, 张宇萱, 朱曰莹, 刘仕强, 白广利. 基于绝热量热仪的锂离子电池热物性参数测试影响因素研究[J]. 储能科学与技术, 2025, 14(4): 1596-1602. |
[13] | 董作林, 宋金岩, 孟子迪. 基于模态分解和深度学习的锂离子电池寿命预测[J]. 储能科学与技术, 2025, 14(4): 1645-1653. |
[14] | 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 邸会芳, 王振兵. 干法电极技术在超级电容器和锂离子电池中的研究进展[J]. 储能科学与技术, 2025, 14(4): 1445-1460. |
[15] | 岳金明, 刘媛丽, 陈一霞, 禹习谦, 李泓. GC-MS检测锂离子电池电解液分离条件的研究[J]. 储能科学与技术, 2025, 14(4): 1564-1573. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||