• •
孙家宝1,2(), 李乐1,2(
), 徐行行1,2, 张睿1,2, 王新改1,2, 王宁1,2, 张海昌1,2, 丁飞1,2(
)
收稿日期:
2025-06-20
修回日期:
2025-10-28
通讯作者:
李乐,丁飞
E-mail:jiabao_sun2019@163.com;liyue@hebut.edu.cn;hilldingfei@163.com
作者简介:
孙家宝(2001—),性别男,硕士在读,研究方向为锂离子电池技术,E-mail:jiabao_sun2019@163.com;
基金资助:
Jiabao SUN1,2(), Yue LI1,2(
), Hanghang XU1,2, Rui ZHANG1,2, Xingai WANG1,2, Ning WANG1,2, Haichang ZHANG1,2, Fei DING1,2(
)
Received:
2025-06-20
Revised:
2025-10-28
Contact:
Yue LI, Fei DING
E-mail:jiabao_sun2019@163.com;liyue@hebut.edu.cn;hilldingfei@163.com
摘要:
磁场作为一种在储能系统中逐渐引起关注的调控策略,在提升锂离子电池电化学性能方面展现出重要潜力,具体包括设计电极结构、促进Li+扩散、降低极化效应和抑制锂枝晶的生长等。然而,对于磁场调控的机制路径、材料响应规律及其构建策略,相关研究尚处于探索阶段,未形成统一的理论体系。本文在系统梳理相关文献的基础上,围绕磁场辅助电池结构设计和无接触式性能调控两大方向,综述了其在晶体取向诱导、无序相晶体结构构建、垂直孔隙设计、电极-电解质界面调控机制等方面的研究进展。同时,重点分析了磁场促进自旋态重构、磁性定向、磁致伸缩效应和磁流体动力学效应等核心机制,并总结了用于分析磁场调控机制与响应行为的原位表征技术和多物理场建模方法。在归纳当前研究成果的基础上,进一步提出当前亟待解决的问题,并从材料响应机制、构建策略及多场耦合等角度提出了后续研究方向,旨在为磁场调控策略在高能锂离子电池系统中的深入发展提供思路参考。
中图分类号:
孙家宝, 李乐, 徐行行, 张睿, 王新改, 王宁, 张海昌, 丁飞. 磁场调控下锂离子电池材料结构设计与离子传输机制研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0568.
Jiabao SUN, Yue LI, Hanghang XU, Rui ZHANG, Xingai WANG, Ning WANG, Haichang ZHANG, Fei DING. Recent Advances in Structure Design and Ion Transport Mechanisms of Lithium-Ion Battery Materials under Magnetic Field Regulation[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0568.
表1
内建磁场调控作用机制"
路径类型 | 代表材料/结构 | 主要作用机制 | 关键性能指标提升 | 参考文献 |
---|---|---|---|---|
电极材料 | Fe2O3/NC、Li3(V1-xFex)2(PO4)3 | 及时性与持续性特征磁响应、磁致伸缩效应 | 首圈容量+14%,长循环稳定性增强、高磁性含量组能量密度与功率密度协同增强 | [ |
集流体 | MOF-74/Ni、Co/ZnO、CoF2 | 调控Li⁺沉积分布,构建平衡电场 | 可达10000 h稳定循环 | [ |
界面结构 | γ-Fe2O3,Co-spc-COP | 优化SEI组成与应力分布 | 循环寿命提升至4000~6600 h | [ |
隔膜设计 | TA-Co/PP,CN-NK | 增强离子迁移选择性,构建局域三维MHD环境 | 锂枝晶抑制,界面稳定性提升 | [ |
[1] | FARGHALI M, OSMAN A I, MOHAMED I M A, et al. Strategies to save energy in the context of the energy crisis: a review [J]. Environmental Chemistry Letters, 2023, 21(4): 1-37. DOI: 10.1007/s10311-023-01591-5 |
[2] | GUTSCH M, LEKER J. Global warming potential of lithium-ion battery energy storage systems: A review [J]. Journal of Energy Storage, 2022, 52(Part C): 105030. DOI: 10.1016/j.est.2022.105030 |
[3] | YE J, DIMITRATOS N, ROSSI L M, et al. Hydrogenation of CO2 for sustainable fuel and chemical production [J]. Science, 2025, 387(6737): eadn9388. DOI: 10.1126/science.adn9388 |
[4] | ENG A Y S, SONI C B, LUM Y, et al. Theory-guided experimental design in battery materials research [J]. Science Advances, 2022, 8(19): 1-17. DOI: 10.1126/sciadv.abm2422 |
[5] | LIU K, LIU Y, LIN D, et al. Materials for lithium-ion battery safety [J]. Science Advances, 2018, 4(6): eaas9820. DOI: 10.1126/sciadv.aas9820 |
[6] | LU G, NAI J, LUAN D, et al. Surface engineering toward stable lithium metal anodes [J]. Science Advances, 2023, 9(14): eadf1550. DOI: 10.1126/sciadv.adf1550 |
[7] | ATTIA P M, MOCH E, HERRING P K. Challenges and opportunities for high-quality battery production at scale [J]. Nature Communications, 2025, 16(1): 611-625. DOI: 10.1038/s41467-025-55861-7 |
[8] | GUPTA A, MANTHIRAM A. Designing advanced lithium-based batteries for low-temperature conditions [J]. Advanced Energy Materials, 2020, 10(38): 2001972. DOI: 10.1002/aenm.202001972 |
[9] | WEISS M, RUESS R, KASNATSCHEEW J, et al. Fast charging of lithium-ion batteries: a review of materials aspects [J]. Advanced Energy Materials, 2021, 11(33): 1-37. DOI: 10.1002/aenm.202101126 |
[10] | CHEN Y, KANG Y, ZHAO Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards [J]. Journal of Energy Chemistry, 2021, 59(8): 83-99. DOI: 10.1016/j.jechem.2020.10.017 |
[11] | LI Y, ZHANG H, ZHANG R, et al. Lithiophilic seeds and rigid arrays synergistic induced dendrite-free and stable Li anode towards long-life lithium-oxygen batteries [J]. Journal of Energy Chemistry, 2022, 73(10): 268-276. DOI: 10.1016/j.jechem.2022.06.021 |
[12] | ZHANG X, JU Z, ZHU Y, et al. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes [J]. Advanced Energy Materials, 2020, 11(2): 2000808. DOI: 10.1002/aenm.202000808 |
[13] | WANG Y, WANG N, SHI C, et al. Multi-dimensional hierarchical structure enable sheet-like network li plating with efficient space utilization for advanced lithium metal anodes [J]. Applied Surface Science, 2025, 704: 163374. DOI: 10.1016/j.apsusc.2025.163374 |
[14] | ZHANG R, CHEN B, MA Y, et al. Armoring lithium metal anode with soft–rigid gradient interphase toward high-capacity and long-life all-solid-state battery [J]. Green Energy & Environment, 2024, 9(8): 1279-1289. DOI: 10.1016/j.gee.2023.02.006 |
[15] | BOLLOJU S, VANGAPALLY N, ELIAS Y, et al. Electrolyte additives for Li-ion batteries: classification by elements [J]. Progress in Materials Science, 2025, 147(0). DOI: 10.1016/j.pmatsci.2024.101349 |
[16] | 陈秉乾, 王稼军. 电磁学.第2版 [M]. 北京: 北京大学出版社, 2012: 233 |
CHEN B G, WANG J J. Electromagnetism. 2nd ed [M], Beijing: Peking University Press, 2012: 233 | |
[17] | ZHANG C Y, ZHANG C, SUN G W, et al. Spin effect to promote reaction kinetics and overall performance of lithium-sulfur batteries under external magnetic field [J]. Angewandte Chemie, 2022, 134(49): e202211570. DOI: 10.1002/ange.202211570 |
[18] | ZHANG W, GAO J, HUANG Y, et al. Utilizing magnetic-field modulation to efficiently improve the performance of LiCoO2||graphite pouch full batteries [J]. Advanced Functional Materials, 2023, 33(47): 2306354. DOI: 10.1002/adfm.202306354 |
[19] | ZHANG L, ZENG M, WU D, et al. Magnetic field regulating the graphite electrode for excellent lithium-ion batteries performance [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6152-6160. DOI: 10.1021/acssuschemeng.8b06358 |
[20] | SHEN K, WANG Z, BI X, et al. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries [J]. Advanced Energy Materials, 2019, 9(20): 1900260. DOI: 10.1002/aenm.201900260 |
[21] | HUANG Y, WU X, NIE L, et al. Mechanism of lithium electrodeposition in a magnetic field [J]. Solid State Ionics, 2020, 345(0): 115171. DOI: 10.1016/j.ssi.2019.115171 |
[22] | KUANG Y, CHEN C, KIRSCH D, et al. Thick electrode batteries: principles, opportunities, and challenges [J]. Advanced Energy Materials, 2019, 9(33): 1901457. DOI: 10.1002/aenm.201901457 |
[23] | WANG X, YU A, JIANG T, et al. Accelerating Li-ion diffusion in LiFePO4 by polyanion lattice engineering [J]. Advanced Materials, 2024, 36(47): e2410482. DOI: 10.1002/adma.202410482 |
[24] | HONG L, LI L, CHEN-WIEGART Y K, et al. Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate [J]. Nature Communications, 2017, 8(1): 1194-1207. DOI: 10.1038/s41467-017-01315-8 |
[25] | HONG L, YANG K, TANG M. A mechanism of defect-enhanced phase transformation kinetics in lithium iron phosphate olivine [J]. npj Computational Materials, 2019, 5(1): 118-127. DOI: 10.1038/s41524-019-0255-3 |
[26] | CAO Z, YAO X, PARK S, et al. Enhancing cathode composites with conductive alignment synergy for solid-state batteries [J]. Science Advances, 2025, 11(1): eadr4292. DOI: 10.1126/sciadv.adr4292 |
[27] | GUO Y, JIANG Y, ZHANG Q, et al. Directional LiFePO4 cathode structure by freeze tape casting to improve lithium ion diffusion kinetics [J]. Journal of Power Sources, 2021, 506(15): 230052. DOI: 10.1016/j.jpowsour.2021.230052 |
[28] | ZHOU J, ZHANG D, SUN G, et al. B-axis oriented alignment of LiFePO4 monocrystalline platelets by magnetic orientation for a high-performance lithium-ion battery [J]. Solid State Ionics, 2019, 338(0): 96-102. DOI: 10.1016/j.ssi.2019.05.002 |
[29] | KIM C, YANG Y, HA D, et al. Crystal alignment of a LiFePO4 cathode material for lithium ion batteries using its magnetic properties [J]. Rsc Advances, 2019, 9(55): 31936-31942. DOI: 10.1039/c9ra05284d |
[30] | KIM C, YANG Y, LOPEZ D H. Crystal alignment technology of electrode material for enhancing electrochemical performance in lithium ion battery [J]. Journal of the Electrochemical Society, 2021, 168(4): 040502. DOI: 10.1149/1945-7111/abf17c |
[31] | GAO D, YANG J, ZHANG D, et al. An effective strategy to enhance the electrochemical performance of LiNi0.6Mn0.2Co0.2O2: Optimizing a Li diffusion pathway via magnetic alignment of single-crystal cathode material under an ordinary 0.4 T magnetic field [J]. Ceramics International, 2022, 48(21): 31598-31605. DOI: 10.1016/j.ceramint.2022.07.081 |
[32] | SUN S, LI X, ZHANG C, et al. Magnetic field-induced disordered phase of spinel oxides for high battery performance [J]. Advanced Materials, 2024, 36(35): e2405876. DOI: 10.1002/adma.202405876 |
[33] | CHEMELEWSKI K R, LEE E-S, LI W, et al. Factors influencing the electrochemical properties of high-voltage spinel cathodes: relative impact of morphology and cation ordering [J]. Chemistry of Materials, 2013, 25(14): 2890-2897. DOI: 10.1021/cm401496k |
[34] | ZHANG L, ZENG M, LIU Z, et al. Aligned Ti3C2Tx Electrodes induced by magnetic field for high-performance lithium-ion storage [J]. ACS Applied Energy Materials, 2021, 4(6): 5590-5598. DOI: 10.1021/acsaem.1c00361 |
[35] | YANG K, JIANG Y, HUANG C. Fabrication of vertically aligned porous graphite anodes via magnetic field-assisted freezing casting for high-performance lithium-ion batteries [J]. International Journal of Electrochemical Science, 2023, 18(11): 100348. DOI: 10.1016/j.ijoes.2023.100348 |
[36] | GAUDILLERE C, SERRA J M. Freeze-casting: Fabrication of highly porous and hierarchical ceramic supports for energy applications [J]. Boletín de la Sociedad Española de Cerámica y Vidrio, 2016, 55(2): 45-54. DOI: 10.1016/j.bsecv.2016.02.002 |
[37] | DENG T, HAN Q, LIU J, et al. Vertically aligned hollow mesoporous silica rods enabling composite polymer electrolytes with fast ionic conduction for lithium metal batteries [J]. Advanced Functional Materials, 2023, 34(16): e2311952. DOI: 10.1002/adfm.202311952 |
[38] | YAN C, XU R, XIAO Y, et al. Toward critical electrode/electrolyte interfaces in rechargeable batteries [J]. Advanced Functional Materials, 2020, 30(23). DOI: 10.1002/adfm.201909887 |
[39] | LI B, CHAO Y, LI M, et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries [J]. Electrochemical Energy Reviews, 2023, 6(1). DOI: 10.1007/s41918-022-00147-5 |
[40] | KONDO Y, ABE T, YAMADA Y. Kinetics of interfacial ion transfer in lithium-ion batteries: Mechanism understanding and improvement strategies [J]. ACS Applied Materials & Interfaces, 2022, 14(20): 22706-22718. DOI: 10.1021/acsami.1c21683 |
[41] | PERVEZ S A, CAMBAZ M A, THANGADURAI V, et al. Interface in solid-state lithium battery: challenges, progress, and outlook [J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22029-22050. DOI: 10.1021/acsami.9b02675 |
[42] | PIAO Z, GAO R, LIU Y, et al. A review on regulating Li+ solvation structures in carbonate electrolytes for lithium metal batteries [J]. Advanced Materials, 2023, 15. DOI: 10.1002/adma.202206009 |
[43] | ADENUSI H, CHASS G A, PASSERINI S, et al. Lithium batteries and the solid electrolyte interphase (SEI)-progress and outlook [J]. Advanced Energy Materials, 2023, 13(10). DOI: 10.1002/aenm.202203307 |
[44] | 阮观强, 华菁, 胡星, 等. 磁场效应对锂离子电池性能的影响 [J]. 储能科学与技术, 2022, 11(1): 265-274 |
RUAN G Q, HUA J, HU X, et al. Effect of magnetic field on the lithium-ion battery performance [J]. Energy Storage Science and Technology, 2022, 11(1): 265-274 | |
[45] | RUAN G, FU X, HU X, et al. Influence of magnetic field on charge and discharge performance of electric vehicle power battery [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 239(2): 866-876. DOI: 10.1177/09544070231207915 |
[46] | CHEN Y, DOU X, WANG K, et al. Magnetically enhancing diffusion for dendrite-free and long-term stable lithium metal anodes [J]. Green Energy & Environment, 2022, 7(5): 965-974. DOI: 10.1016/j.gee.2020.12.014 |
[47] | LI Y, XIAO M, SHEN C, et al. Three-dimensional SEI framework induced by ion regulation in toroidal magnetic field for lithium metal battery [J]. Cell Reports Physical Science, 2022, 3(10). DOI: 10.1016/j.xcrp.2022.101080 |
[48] | GAO Y, QIAO F, LI N, et al. Full-chain enhanced ion transport toward stable lithium metal anodes [J]. Journal of Energy Chemistry, 2023, 79(4): 390-397. DOI: 10.1016/j.jechem.2023.01.030 |
[49] | WANG S, DENG Q, GU J, et al. In-situ observation of lithium dendrite growth regulated by the external magnetic field [J]. Journal of Energy Storage, 2025, 115: 116004. DOI: 10.1016/j.est.2025.116004 |
[50] | YU L, WANG J, XU Z J. A perspective on the behavior of lithium anodes under a magnetic field [J]. Small Structures, 2020, 2(1): 2000043. DOI: 10.1002/sstr.202000043 |
[51] | MAO Y, ZHU T, HAO X, et al. Growth mechanism for dendrite-free lithium regulated deposition [J]. Journal of Energy Storage, 2024, 77: 109904. DOI: 10.1016/j.est.2023.109904 |
[52] | GANGULY D, V S A, GHOSH A, et al. Magnetic field assisted high capacity durable Li-ion battery using magnetic α-Fe2O3 nanoparticles decorated expired drug derived N-doped carbon anode [J]. Scientific Reports, 2020, 10(1): 9945-9955. DOI: 10.1038/s41598-020-67042-1 |
[53] | LEE Y T, CHEN Y T, CHENG J Y, et al. Investigation of lithium-ion battery performance utilizing magnetic controllable superionic conductor Li3(V1-xFex)2(PO4)3/C (x = 0.05 and 0.10) [J]. ACS Omega, 2024, 9(26): 28283-28292. DOI: 10.1021/acsomega.4c01757 |
[54] | CHEN H, HU J, LI H, et al. 3D Magnetic metal-organic frameworks current collectors accelerate the lithium-ion diffusion rate for superlong cyclic lithium metal anode [J]. Small, 2024, 20(9): e2307598. DOI: 10.1002/smll.202307598 |
[55] | CAO W, WU Z, YANG Y, et al. Field-assisted regulation induced by cobalt-doped ZnO for dendrite-free lithium metal anodes [J]. Chemistry – A European Journal, 2024, 30(2): e202302867. DOI: 10.1002/chem.202302867 |
[56] | LIU M, MA J, ZHANG X, et al. Regulating of lithium-ion dynamic trajectory by ferromagnetic CoF2 to achieve ultra stable deep lithium deposition over 10000 h [J]. Advanced Functional Materials, 2024, 35(10): 2416527. DOI: 10.1002/adfm.202416527 |
[57] | XIAO S, ZHANG Y, ZHOU X, et al. 3D spatially-confined magnetic anodes towards advanced lithium ion batteries [J]. Journal of Alloys and Compounds, 2023, 967: 171827. DOI: 10.1016/j.jallcom.2023.171827 |
[58] | CHEN Y, LIU H, LIU L, et al. Construction of a magnetic interphase for stable cycling of lithium metal batteries [J]. Batteries & Supercaps, 2023, 7(1): e202300389. DOI: 10.1002/batt.202300389 |
[59] | LU X M, CAO Y, SUN Y, et al. Sp-carbon-conjugated organic polymer as multifunctional interfacial layers for ultra-long dendrite-free lithium metal batteries [J]. Angewandte Chemie International Edition, 2024, 63(15): e202320259. DOI: 10.1002/anie.202320259 |
[60] | ZHANG J, DU Z, WANG Y, et al. Magnetic field-driven ion selectivity boosts LiF-rich SEI formation for enhanced lithium metal battery performance across temperatures [J]. ACS Applied Materials & Interfaces, 2025, 17(12): 18329-18338. DOI: 10.1021/acsami.4c21968 |
[61] | BAE M, KANG M, PIAO Y. Efficient charge redistribution achieved by 3D micromagnetic fields for dendrite-free lithium metal batteries [J]. Advanced Functional Materials, 2025: e2421952. DOI: 10.1002/adfm.202421952 |
[1] | 胡力月, 黄威, 周云, 周英强, 邵常政, 王柯. 基于模糊推理的储能系统锂离子电池模组热扩散概率评估方法[J]. 储能科学与技术, 2025, 14(7): 2662-2674. |
[2] | 王薇, 梁惠施, 李棉刚, 周奎, 王薇, 王姿尧, 史梓男. 基于迁移学习的锂电池不可逆析锂监测方法[J]. 储能科学与技术, 2025, 14(7): 2698-2706. |
[3] | 熊峰, 孔得朋, 平平, 张越, 任宪通, 吕耀. 电热耦合诱导三元锂离子电池热失控特性[J]. 储能科学与技术, 2025, 14(7): 2752-2760. |
[4] | 翁雯媛, 沈斌, 朱建功, 汪洋, 路华鹏, 何乌利雅苏, 刘浩男, 戴海峰, 魏学哲. 锂离子电池阳极危害性析锂原位检测综述[J]. 储能科学与技术, 2025, 14(7): 2575-2589. |
[5] | 张子敬, 原蓓蓓, 李红, 高颖. 锂离子电池热失控气体检测分析及预警[J]. 储能科学与技术, 2025, 14(7): 2820-2832. |
[6] | 刘佳辉, 卞伟翔, 李大伟. 锂电池石墨复合电极力-电耦合性能原位测量分析[J]. 储能科学与技术, 2025, 14(6): 2240-2247. |
[7] | 陈峥, 多功东, 申江卫, 沈世全, 刘昱, 魏福星. 基于容量增量分析与VMD-GWO-KELM的锂电池健康状态估计[J]. 储能科学与技术, 2025, 14(6): 2476-2487. |
[8] | 阮晶晶, 巫湘坤, 李勇慧, 赵冲冲, 李珅珅, 王童飞, 梁圣杰, 高桂红. 低成本干法石墨厚电极的制备与性能研究[J]. 储能科学与技术, 2025, 14(6): 2248-2255. |
[9] | 韩丹丹, 张武卫, 张亮, 王宗江. 核壳结构LiMn1-y Fe y PO4/C正极材料设计与电化学性能研究[J]. 储能科学与技术, 2025, 14(6): 2215-2222. |
[10] | 王功瑞, 张安萍, 任萱萱, 杨铭哲, 韩宇宁, 吴忠帅. 高电压钴酸锂正极:关键挑战、改性策略与未来展望[J]. 储能科学与技术, 2025, 14(6): 2278-2319. |
[11] | 周海洋, 张振东, 盛雷, 朱泽华, 张晓军, 张春风. 储能用锂电池浸没式热性能调控仿真及热安全实验研究[J]. 储能科学与技术, 2025, 14(5): 1866-1874. |
[12] | 宋海飞, 王乐红, 原义栋, 赵天挺, 陈捷. 基于改进卡尔曼算法的电池采样电压滤波估计[J]. 储能科学与技术, 2025, 14(5): 2106-2113. |
[13] | 曾州岚, 尚雷, 胡志金, 王宗凡, 辛小超, 刘瑛. 高容量锂离子电池正极补锂材料Li5FeO4@C的性能研究[J]. 储能科学与技术, 2025, 14(5): 1875-1883. |
[14] | 冷杨, 黄硕, 桂凯旋, 闫文其, 刘琪. 聚阴离子COFs基复合膜稳定水系锌离子电池负极的研究[J]. 储能科学与技术, 2025, 14(5): 1900-1909. |
[15] | 莫子鸣, 饶宗昕, 杨建飞, 杨孟昊, 蔡黎明. 锂离子电池过充热失控气热模型构建及关键参数影响分析[J]. 储能科学与技术, 2025, 14(5): 1784-1796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||