• XXXX •
梁沁沁1,2(
), 韩方源1,2(
), 唐彬1,2, 何金梅3, 李建新1,2, 罗宗昌1,2, 喻敏1,2, 蒙莹1
收稿日期:2025-09-08
修回日期:2025-11-11
通讯作者:
韩方源
E-mail:2338046893@qq.com;han_fy.sy@gx.csg.cn
作者简介:梁沁沁(1989—),女,博士,钠离子电池储能系统,2338046893@qq.com
基金资助:
Qinqin LIANG1,2(
), Fangyuan HAN1,2(
), Bin Tang1,2, Jinmei HE3, Jianxin LI1,2, Zongchang LUO1,2, Min YU1,2, Ying MENG1
Received:2025-09-08
Revised:2025-11-11
Contact:
Fangyuan HAN
E-mail:2338046893@qq.com;han_fy.sy@gx.csg.cn
摘要:
以锂/钠离子电池为主的新型储能技术是可再生清洁能源开发利用以及实现“双碳”目标的重要支撑,但锂/钠离子电池在高度集成性和高功率密度应用场景下的热安全问题值得关注。液冷技术作为增强电池热管理的重要技术成为解决电池热安全问题的关键。本文首先从锂/钠离子电池发展现状和电池热管理需求出发,简要总结了液冷技术的分类(包括冷板式液冷、浸没式液冷和喷淋式液冷),并结合其工作原理讨论了液冷技术中冷却液的蓄热机理;重点针对液冷技术中冷却液的关键性能要求进行详细分析,并系统阐述了六种冷却液(水基冷却液、纳米流体、碳氢化合物及有机硅类、碳氟化合物类、沸腾液体和液态金属)的特点和应用场景;重点探讨了冷板式液冷、浸没式液冷和喷淋式液冷技术的最新研究进展,并对液冷技术在钠离子电池中应用和发展进行展望,旨在为学术界和产业界提供参考。
中图分类号:
梁沁沁, 韩方源, 唐彬, 何金梅, 李建新, 罗宗昌, 喻敏, 蒙莹. 锂/钠电池热管理系统中液冷技术研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0797.
Qinqin LIANG, Fangyuan HAN, Bin Tang, Jinmei HE, Jianxin LI, Zongchang LUO, Min YU, Ying MENG. Research progress on liquid cooling technology in lithium/sodium battery thermal management system[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0797.
| [1] | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(08): 2806-2819. ZHANG Z G, KANG C Q. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future [J]. Proceedings of the CSEE, 2022, 42(08): 2806-2819. |
| [2] | 赵丽维, 王粤, 王海波, 等. 2023年中国电池市场分析[J]. 电池, 2024, 54(01): 9-13. ZHAO L W, WANG Y, WANG H B, et al. Analysis of China's battery market in 2023[J]. Battery Bimonthly, 2024, 54(01): 9-13. |
| [3] | 刘卓敏, 孙旦, 谌红玉, 等. 钠离子电池用O3型层状金属氧化物研究进展[J]. 电池, 2024, 54(02): 244-248. LIU Z M, SUN D, SHEN H Y, et al. Research progress in O3-type layered metal oxides for sodium-ion battery[J]. Battery Bimonthly, 2024, 54(02): 244-248. |
| [4] | 潘文涛, 余新玲, 杨续来, 等. 钠离子电池的机遇与挑战[J]. 材料工程, 2025, (07): 1-14. PAN W T, YU X L, YANG X L, et al. Opportunities and challenges of sodium-ion batteries[J]. Journal of Materials Engineering, 2025, (07): 1-14. |
| [5] | Chayambuka Kudakwashe, Mulder Grietus, Danilov Dmitri L., et al. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities[J]. 2020, 10(38): 2001310. |
| [6] | 冯振华, 邱祥云, 张涛, 等. 全固态锂电池热安全性研究进展[J]. 精细化工, 2024, 41(05): 960-970. FENG Z H, QIU X Y, ZHANG T, et al. Research progress on thermal safety of all solid-state lithium batteries[J]. Fine Chemicals, 2024, 41(05): 960-970. |
| [7] | 申菲. 锂离子电池安全性及预警措施研究[J]. 储能科学与技术, 2024, 13(10): 3515-3517. SHEN F. Research on the safety and early warning measures of the lithium-ion battery[J]. Energy Storage Science and Technology, 2024, 13(10): 3515-3517. |
| [8] | 陈凌宇, 汪湘晋, 叶凌霄, 等. 电力储能用钠离子电池失效机理及性能提升分析[J]. 蓄电池, 2024, 61(02): 51-62+70. CHEN L Y, WANG X J, YE L X, et al. Analysis of failure mechanism and performance improvement of sodium-ion batteries for power storage[J]. Chinese LABAT Man, 2024, 61(02): 51-62+70. |
| [9] | 程闻笛, 张大全. 储能电池包的热特性数值研究[J/OL]. 化工学报, 1-24. CHENG W D, ZHANG D Q. Numerical study of thermal characteristics of energy storage battery pack[J/OL]. CIESC Journal, 1-24. |
| [10] | 杨艺云, 张阁, 葛攀. 高适用性集装箱储能系统技术研究[J]. 广西电力, 2015, 38(06): 10-14. YANG Y Y, ZHANG G, GE P. Study on Container Energy Storage System with High Applicability[J]. Guangxi Electric Power, 2015, 38(06): 10-14. |
| [11] | 马肖娜, 严华夏, 陈奕, 等. 风冷电池热管理系统参数研究与性能优化[J]. 制冷与空调(四川), 2024, 38(05): 614-620. MA X N, YAN H X, CHEN Y, et al. Parameter research and performance optimization of air-cooled battery thermal management system[J]. Refrigeration & Air Conditioning, 2024, 38(05): 614-620. |
| [12] | 张文涛,李晓杰,王发成,等.有限空间下动力电池风冷散热结构优化研究[J].电源技术, 2025, 49(04): 782-793. ZHANG W T, LI X J, WANG F C, et al. Research on optimization of air-cooled heat dissipation structure of power batteries in limited space[J]. Power Supply Technology, 2025, 49(04): 782-793. |
| [13] | 张锐. 冷板式液冷数据中心研究与应用[J].电子元器件与信息技术, 2024, 8(09): 198-201. ZHANG R. Research and application of cold plate liquid cooled data center[J]. Electronic Components and Information Technology, 2024, 8(09): 198-201. |
| [14] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(04): 1474-1488. LI J Y, LI J W, ZHOU L W. Heat transfer performance of cold plates with different perturbation structures[J]. CIESC Journal, 2023, 74(04): 1474-1488. |
| [15] | 陆威, 仲文, 吴志根, 等. 储能锂电池浸没式液冷的散热特性实验研究[J]. 化学工程, 1-6. LU W, ZHONG W, WU Z G, et al. Experimental study on heat dissipation behavior of immersion liquid cooling for energy storage lithium batteries[J/OL]. Chemical Engineering(China), 1-6. |
| [16] | 郭银杰, 赵春雨. 数据中心冷却技术发展综述[J]. 制冷与空调, 2025, 25(03): 1-8. GUO Y J, ZHAO C Y. Discussion on the development history of data center cooling technology[J]. Refrigeration and Air-Conditioning, 2025, 25(03): 1-8. |
| [17] | 孙睿, 王军锋, 许浩洁, 等. 喷雾冷却技术及其强化传热机制研究进展[J]. 化工学报, 2025,76(04): 1404-1421. SUN R, WANG J F, XU H J, et al. Research progress on heat transfer enhancement mechanism of spray cooling technology [J]. CIESC Journal, 2025, 76(04): 1404-1421. |
| [18] | 周文政, 章学来, 顾杰, 等. 相变储能材料的研究及应用进展[J]. 应用化工, 2024, 53(10): 2508-2511. ZHOU W Z, ZHANG X L, GU J, et.al. Progress in research and application of phase change energy storage materials[J], Applied Chemical Industry, 2024, 53(10): 2508-2511. |
| [19] | 唐可鉴, 郑晓东, 刘永超, 等. 相变材料基混合电池热管理系统研究进展[J]. 金属功能材料, 2025, 32(04): 32-41. TANG K J, ZHENG X D, LIU Y C, et al. Research progress of phase change material-based hybrid battery thermal management system [J]. Metallic Functional Materials, 2025, 32(04): 32-41. |
| [20] | 刘圣春, 徐智明, 李雪强, 等. 单相浸没式液冷箱体关键参数的仿真研究[J]. 制冷学报, 2023, 44(02): 159-166. LIU S C, XU Z M, LI X Q, et al. Simulation study on key parameters of single-phase liquid-cooling cabinet in data centers[J]. Journal of Refrigeration, 2023, 44(02): 159-166. |
| [21] | 钟杨帆, 刘丹, 文芳志, 等. 数据中心单相浸没液冷规模化应用关键技术研究[J]. 信息通信技术与政策, 2023, 49(05): 65-72. ZHONG Y F, LIU D, WEN F Z, et al. Research on key technology of large-scale application of single-phase immersion cooling in data center[J]. Information and Communications Technology and Policy, 2023, 49(05): 65-72. |
| [22] | 严昱昊, 叶恭然, 姚希栋, 等. 适用于相变浸没式液冷服务器系统的电子氟化液的材料兼容性研究[J]. 制冷与空调, 2023, 23(10): 70-79+85. YAN Y H, YE G R, YAO X D, et al. Material compatibility of electronic fluoride liquid for phase-change immersion liquid cooling server system[J]. Refrigeration and Air-Conditioning, 2023, 23(10): 70-79+85. |
| [23] | 周彪, 葛慕滢, 王凯, 等. 液体浸没条件下锂离子电池新型热灾害的研究进展与挑战[J]. 消防科学与技术, 2024, 43(06): 767-773. ZHOU B, GE M Y, WANG K, et. al. Research progress and challenges of new thermal disasters of lithium-ion batteries under liquid immersion conditions[J]. Fire Science and Technology, 2024.06.0767.07. |
| [24] | 王国阳, 赵路遥, 孔庆红, 等. 基于浸没冷却的锂离子电池热管理性能研究[J]. 电源技术, 2022, 46(04): 408-411. WANG G Y, ZHAO L Y, KONG Q H, et al. Research on thermal management performance of Li-ion battery based on immersion cooling[J]. Chinese Journal of Power Sources, 2022, 46(04): 408-411. |
| [25] | 郭鹏宇, 张明杰, 程宜风, 等. 280Ah浸没式液冷电池模组流动传热策略研究[J/OL]. 储能科学与技术, 2025, 1-17. GUO P Y, ZHANG M J, CHENG Y F, et al. Research on flow heat transfer strategy for 280Ah immersion liquid-cooled battery module [J/OL]. Energy Storage Science and Technology, 2025, 1-17. |
| [26] | 付立宸, 费筱禛, 管祥添, 等. 数据中心浸没式液冷用含氟冷却液应用研究进展[J]. 制冷与空调, 2025, 25(06): 68-75. FU L C, FEI X Z, GUAN X T, et al. Application research advances of fluorinated coolants for immersion liquid cooling in data center [J]. Refrigeration and Air-Conditioning, 2025, 25(06): 68-75. |
| [27] | 姚惠昭, 王炎, 牟瑞涛, 等. 基于电子氟化液的浸没式电池热管理实验研究[J]. 低温与超导, 2025, 53(05): 33-43. YAO H Z, WANG Y, MOU R T, et al. Experimental study on thermal management of immersion batteries based on electronic fluoride liquid[J]. Cryogenics & Superconductivity, 2025, 53(05): 33-43. |
| [28] | 徐阳, 唐桢馥, 张晓晶, 等. 锂离子电池不同冷却方式及浸没式冷却液综合对比分析[J]. 广东电力, 2024, 37(09): 45-55. XU Y, TANG Z F, ZHANG X J, et al. Comprehensive comparison of different cooling methods and immersion cooling liquids for lithium-ion batteries [J]. Guangdong Electric Power, 2024, 37(09): 45-55. |
| [29] | ZHOU T, WU J H, LIU X, et al. A novel water-based direct contact cooling system for thermal management of lithium-ion batteries[J]. Journal of Energy Storage, 2025, 107: 114973. |
| [30] | Li X X, Huang Q Q, Deng J, et al. Evaluation of lithium battery thermal management using sealant made of boron nitride and silicone[J]. Journal of Power Sources, 2020, 451: 227820. |
| [31] | SOURIRAJAN L, SUBRAMANIAM M, STANISLAUS A B, et al. Multi-perspective behavioural investigations on coolant of battery thermal management systems in electrical vehicles using computational fluid dynamics[J]. Energy Science & Engineering, 2025, 13(5): 2455-2479. |
| [32] | 钟恺为, 王长宏, 吕琪铭, 等. 锂离子电池浸没式冷却的研究进展[J]. 电池, 2024, 54(02): 265-270. ZHONG K W, WANG C H, LVU Q M, et al. Research progress in immersion cooling for Li-ion battery[J]. Battery Bimonthly, 2024, 54(02): 265-270. |
| [33] | Zakaria I, Azmi W H, Mohamed W A N W, et al. Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water-ethylene glycol mixture for proton exchange membrane fuel cell application[J]. International Communications in Heat and Mass Transfer, 2015, 61: 61-68. |
| [34] | Das P K, A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids[J]. Journal of Molecular Liquids, 2017, 240: 420-446. |
| [35] | Kumar D, Gupta R B, Ranjan R, et al. CFD simulation of lithium-ion battery pack thermal management system with different cooling fluids under high discharge rate condition[J], Journal of Enhanced Heat Transfer, 2025, 32(3): 105-127. |
| [36] | 张进强, 王海民, 鲁南. 绝缘油浸没式冷却小型NCM811动力电池模组的温度场特性实验[J]. 储能科学与技术, 2022, 11(08): 2612-2619. ZHANG J Q, WANG H M, LU N. Temperature field characteristics of a small NCM811 traction battery module cooled by insulating oil immersion[J]. Energy Storage Science and Technology, 2022, 11(08): 2612-2619. |
| [37] | Liu J, Huang S L, Chen H. Recent progress and prospects in oil-immersed battery thermal management system based on single-phase insulating oil: a review[J], Journal of Thermal Analysis and Calorimetry, 2024, 149(10): 4263-4286. |
| [38] | 张呈平, 郭勤, 贾晓卿, 等. 数据中心用浸没式冷却液的研究进展[J]. 精细化工, 2022, 39(11): 2184-2195. ZHANG C P, GUO Q, JIA X Q, et al. Research progress of immersion coolant for data centers[J]. Fine Chemicals, 2022, 39(11): 2184-2195. |
| [39] | 张静, 苏玉倩, 孙牧, 等. 液冷电池热管理中冷却剂的研究进展[J]. 河南科技, 2025, 52(05): 84-89. ZHANG J, SU Y Q, SUN M, et al. Advances in coolant research for thermal management of liquid-cooled batteries[J]. Henan Science and Technology, 2025, 52(05): 84-89. |
| [40] | Wang Y H, Li C E, Wen X D, et al. Experimental studies on two-phase immersion liquid cooling for Li-ion battery thermal management[J], Journal of Energy Storage, 2023, 72: 108748. |
| [41] | Li C E, Wan Y H, Sun Z W, et al. Two-phase immersion liquid cooling system for 4680 Li-ion battery thermal management[J], Journal of Energy Storage, 2024, 97: 112952. |
| [42] | Tang Z G, Ji Y T, Sun R, et al. Simulation study on thermal performance of an indirect boiling cooling cylindrical battery system with two-phase coolant R141b[J], Energy Technology, 2023, 11(12): 2300631. |
| [43] | 邓中山. 液态金属前沿研究及产业发展建议[J]. 前瞻科技, 2025, 4(01): 81-91. DENG Z S. Frontier research of liquid metal and industrial development suggestions[J]. Science and Technology Foresight, 2025, 4(01): 81-91. |
| [44] | Muhammad A, Selvakumar D, Iranzo A, et al. Comparison of pressure drop and heat transfer performance for liquid metal cooled mini-channel with different coolants and heat sink materials[J], Journal of Thermal Analysis and Calorimetry, 2020, 141(1): 289-300. |
| [45] | Yang X H, Tan S C, Liu J, Thermal management of Li-ion battery with liquid metal, Energy Conversion and Management, 2016, 117: 577-585. |
| [46] | Jindal P, Sharma P, Kundu M, et al. Computational fluid dynamics (CFD) analysis of graphene nanoplatelets for the cooling of a multiple tier Li-ion battery pack[J], Thermal Science and Engineering Progress, 2022, 31: 101282. |
| [47] | Li G, Xu G M, Ding Y P, et al. Evaluation on thermal performance of liquid-cooling structures for high-power lithium-ion battery pack[J], International Journal of Energy Research, 2022, 46(5): 6099-6111. |
| [48] | Liu Z, Liu W Z, Lv S, Numerical study of battery thermal management system using bionic leaf-shaped channel liquid cooling plate[J], Applied Thermal Engineering, 2025 268: 125898. |
| [49] | Yang Z, Sun H P, Zhang Y M, Thermal characteristics and reliability analysis of liquid-cooled heat dissipation system for lithium-ion batteries with bionic vascular structure[J], Applied Thermal Engineering, 2025, 269: 126005. |
| [50] | Yang H, Liu N H, Gu M J, et al. Optimized design of novel serpentine channel liquid cooling plate structure for lithium-ion battery based on discrete continuous variables[J], Applied Thermal Engineering, 2025 264: 125502. |
| [51] | Han X J, Li C R, LYV P Z, et al. Research on thermal runaway propagation of lithium-ion batteries based on cold plate cooling and flame-retardant materials[J], Journal of Energy Storage, 2025, 110: 115271. |
| [52] | 刘帆, 张芫通, 陶成, 等. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(05): 1777-1786. LIU F, ZHANG Y T, TAO C, et al. Performance of manifold microchannel liquid cooling[J]. CIESC Journal, 2024, 75(05): 1777-1786. |
| [53] | Qi W J, Huang W Q, Niu J T, et al. Thermal management of power battery based on flexible Swiss roll type liquid cooling micro-channel[J], Applied Thermal Engineering, 2023, 219: 119491. |
| [54] | Xian Y P, Zhang Z Y, Bai X Y, et al. Study on uniform distribution of liquid cooling pipeline in container battery energy storage system[J], Journal of Energy Storage, 2025, 112: 115395. |
| [55] | Tian J M, Mei W X, Tang J, et al. Numerical study on heat dissipation and structure optimization of immersed liquid cooling mode used in 280Ah LiFePO4 batteries, Process Safety and Environmental Protection[J], 2024, 185: 446-457. |
| [56] | Koster D, Marongiu A, Chahardahcherik D, et al. Degradation analysis of 18650 cylindrical cell battery pack with immersion liquid cooling system. Part 1: Aging assessment at pack level[J], Journal of Energy Storage, 2023, 62; 106839. |
| [57] | Wu X L, Lu Y J, Ouyang H S, et al. Theoretical and experimental investigations on liquid immersion cooling battery packs for electric vehicles based on analysis of battery heat generation characteristics[J], Energy Conversion and Management, 2024, 310: 118478. |
| [58] | Li Y, Bai M L, Zhou Z F, et al. Experimental investigations of liquid immersion cooling for 18650 lithium-ion battery pack under fast charging conditions[J], Applied Thermal Engineering, 2023, 227: 120287. |
| [59] | Gao Q, Lei Z G, Huang Y P, et al. Performance investigation of a liquid immersion cooling system with fish-shaped bionic structure for Lithium-ion battery pack[J], International Journal of Heat and Mass Transfer, 2024, 222; 125156. |
| [60] | Chen H, Ruan X H, Peng Y H, et al. Application status and prospect of spray cooling in electronics and energy conversion industries[J], Sustainable Energy Technologies and Assessments, 2022, 52: 102181. |
| [61] | Shi H, Zeng Z, Kong B B, et al. Enhancing high-density battery performance through innovative single-phase spray technology in immersion cooling systems[J], Journal of Power Sources, 2025, 626: 235770. |
| [62] | Dhuchakallaya I, Saechan P, Enhancing the cooling efficiency of the air cooling system for electric vehicle battery modules through liquid spray integration[J], Journal of Energy Storage, 2023, 72: 108751. |
| [63] | Liu X Y, Zhang T S, Gao Q, et al. The suppression of thermal propagation using spray cooling with R410A in overheated lithium battery pack[J], Case Studies in Thermal Engineering, 2024, 58: 104339. |
| [64] | Qin P, Jia Z Z, Jin K Q, et al. The experimental study on a novel integrated system with thermal management and rapid cooling for battery pack based on C6F12O spray cooling in a closed-loop[J], Journal of Power Sources, 2021, 516; 230659. |
| [65] | Huang Y Q, Lu J J, Lu Y J, et al. Investigation into the effects of emergency spray on thermal runaway propagation within lithium-ion batteries[J], Journal of Energy Storage, 2023, 66: 107505. |
| [66] | Jia S Y, Li N, Shuang L, et al. Numerical simulation and experimental study of a novel emergency cooling system for thermal runaway propagation of power battery module[J], Applied Thermal Engineering, 2025, 272: 126344. |
| [67] | Liu X Y, Zhang T S, Gao Q, et al. Refrigerant spray cooling in the overheating decomposition stage of ternary Li-ion battery[J], Applied Thermal Engineering, 2024, 236: 121613. |
| [68] | 彭宇翔, 高立克, 李勇琦, 等. 钠离子电池储能系统产热特性与热管理策略优化研究[J]. 储能科学与技术, 1-9. Peng Y X, Gao L K, LI YQ, et al. Research on Heat Generation Characteristics and Thermal Management Strategy Optimization of Sodium Ion Battery Energy Storage System[J]. Energy Storage Science and Technology, 1-9. |
| [69] | 闻有为, 滕安琪, 李勇琦, 等. 不同放电倍率下钠离子电池的电性能与产热行为研究[J]. 储能科学与技术, 2025, 14(4): 1687-1697. WEN Y W, TENG A Q, LI Y Q, et al. Electrical performance and thermal behavior of sodium-ion batteries with different discharge multiplicities[J]. Energy Storage Science and Technology, 2025, 14(04): 1687-1697. |
| [70] | 王培志. 钠离子电池储能系统的电气架构与性能提升研究[J]. 电工技术, 2025, (09): 57-59. Wang P Z. Research on electrical architecture and performance enhancement of sodium-ion battery energy storage system[J]. Electric Engineering, 2025, (09): 57-59. |
| [71] | Zhang J Y, Huang H N, Xu C S, et al. Electro-thermal coupling modeling and thermal characterization of sodium-ion batteries [J]. Applied Thermal Engineering, 2025, 272: 126439. |
| [1] | 高启发, 张楠, 张兆利, 杜雁霞, 袁艳平. 不同力场下泡沫铜对相变材料传热及控温特性的影响[J]. 储能科学与技术, 2025, 14(9): 3301-3310. |
| [2] | 林季锦, 刘倩, 曲涛, 李京鲲, 黄东永, 朱晓庆, 巨星. 锂离子电池储能系统浸没液冷的技术经济性分析[J]. 储能科学与技术, 2025, 14(9): 3622-3635. |
| [3] | 李承晨, 余庆华, 代慧涛, 贾娜, 王琳, 孙彬博. 基于SrBr2·6H2O的封闭式热化学反应器储/放能特性模拟研究[J]. 储能科学与技术, 2025, 14(9): 3319-3329. |
| [4] | 袁艳平, 高启发, 张楠, 孙钦荣. 非均匀泡沫铜强化相变材料蓄热特性的数值分析[J]. 储能科学与技术, 2025, 14(8): 3100-3109. |
| [5] | 李博文, 文贤馗, 范强, 古庭赟, 史正军, 张晓寅. MW级飞轮电机转子中空轴内通流散热实验研究[J]. 储能科学与技术, 2025, 14(8): 2925-2931. |
| [6] | 李一鸣, 严景好, 席丽娜, 孙晓兵, 刘鸣皋, 李杰, 孙小琴. 基于高孔隙率泡沫金属的偏心管式复合相变储热单元储热性能数值模拟[J]. 储能科学与技术, 2025, 14(5): 1931-1942. |
| [7] | 李志强, 巴义春, 孙广强. 锂电池蜂窝形叉状流道冷板散热研究[J]. 储能科学与技术, 2025, 14(5): 1776-1783. |
| [8] | 刘顺新, 许令平, 张建兴, 曾光, 李昊阳. 基于双通道并行串联式液冷板下锂电池温升特性数值分析[J]. 储能科学与技术, 2025, 14(4): 1496-1506. |
| [9] | 杨斌, 于祥京, 郑洋, 杨世轩, 杨启容, 乔大梁, 孙杨, 李友平. 管壳式相变储能换热器翅片优化模拟分析[J]. 储能科学与技术, 2025, 14(4): 1394-1412. |
| [10] | 谭鋆, 丁若晨, 周晓宇, 蔺新星, 苏文, 徐波, 吴宏. 液冷数据中心余热驱动的“热泵-跨临界CO2 发电”卡诺电池热力性能分析[J]. 储能科学与技术, 2025, 14(4): 1471-1480. |
| [11] | 黄喆, 于志明, 卿召进, 张兆利. 旋转热边界下球形蓄热单元内PW/SEBS/EG复合相变材料的传热特性[J]. 储能科学与技术, 2025, 14(4): 1413-1423. |
| [12] | 陈岳浩, 陈莎, 陈慧兰, 孙小琴, 罗永强. 储能电池组浸没式液冷系统冷却性能模拟研究[J]. 储能科学与技术, 2025, 14(2): 648-658. |
| [13] | 吕福祥, 陆晓峰, 李洪峰, 朱晓磊. “散-储”一体化的电池热管理系统研究[J]. 储能科学与技术, 2025, 14(10): 3677-3686. |
| [14] | 孟祥喜, 刘冠新, 王志玺, 李俊霞, 周浩, 娄旭静, 张泉. 高温高湿环境下工商业储能液冷系统性能实验研究[J]. 储能科学与技术, 2025, 14(10): 3755-3763. |
| [15] | 李岳峰, 丁纬达, 韦银涛, 孙勇, 饶庆, 项峰, 姚颖聪. 关键因素对储能浸没式锂电池包温度特性影响的研究[J]. 储能科学与技术, 2025, 14(1): 152-161. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||