储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3755-3763.doi: 10.19799/j.cnki.2095-4239.2025.0390

• 储能系统与工程 • 上一篇    下一篇

高温高湿环境下工商业储能液冷系统性能实验研究

孟祥喜1(), 刘冠新2, 王志玺1, 李俊霞2, 周浩3, 娄旭静2, 张泉2()   

  1. 1.河南平高电气股份有限公司,河南 平顶山 467000
    2.湖南大学土木工程学院,湖南 长沙 410000
    3.威胜能源技术股份有限公司,湖南 湘潭 411100
  • 收稿日期:2025-04-23 修回日期:2025-06-05 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 张泉 E-mail:mxxyy2000@126.com;quanzhang@hnu.edu.cn
  • 作者简介:孟祥喜(1983—),男,高级工程师,研究方向为机械设计,E-mail:mxxyy2000@126.com
  • 基金资助:
    国家重点研发政府间重点专项项目(2023YFE0120400)

Experimental study on liquid cooling system performance for commercial and industrial energy storage under high-temperature and high-humidity conditions

Xiangxi MENG1(), Guanxin LIU2, Zhixi WANG1, Junxia LI2, Hao ZHOU3, Xujing LOU2, Quan ZHANG2()   

  1. 1.Henan Pinggao Electric Co. , Ltd, Pingdingshan 467000, Henan, China
    2.School of Civil Engineering, Hunan University, Changsha 410000, Hunan, China
    3.Wasion Energy Technology Co. , Ltd, Xiangtan 411100, Hunan, China
  • Received:2025-04-23 Revised:2025-06-05 Online:2025-10-28 Published:2025-10-20
  • Contact: Quan ZHANG E-mail:mxxyy2000@126.com;quanzhang@hnu.edu.cn

摘要:

随着工商业储能电池能量密度的持续提升、多场景应用范围的不断拓展,加之高温高湿工况对电池热管理提出的严苛要求,系统热失控风险隐患更加凸显。然而,在高温高湿环境下,液冷系统的性能缺乏实验研究。本工作基于高温/高湿环境和电池连续充放电情形,测试分析了冷源侧设备运行和能耗特性、输配系统的供回液温度、末端侧冷板表面以及电池温度。实验结果表明:对比30 ℃、RH=30%工况,高温40 ℃、RH=30%工况下压缩机、风机的启停频率降低了52%,冷却系统总能耗增加了39%,电池的纵向平均温差从2.82 ℃升高到3.14 ℃;在高湿环境(30 ℃、RH=70%)下,供液温度由20~25 ℃提高至24~28 ℃后,系统能耗降低了22%,电芯最大温度为40 ℃,相较之前提高了3 ℃,平均极差降低了22.56%,电池纵向平均温差从2.89 ℃降低到2.80 ℃。环境温度、湿度,以及供液温度对电池包内电池侧各界面的纵向温差无明显影响。

关键词: 工商业储能, 液冷, 热管理, 高温高湿, 电池温度

Abstract:

With the continuous improvement in the energy density of commercial and industrial energy storage systems and the expanding range of applications, coupled with stringent thermal management requirements under high-temperature and high-humidity conditions, the potential risk of thermal runaway has become increasingly significant. However, experimental research on liquid cooling system performance in such thermo-humidity environments remains limited. This study investigates the operational characteristics and energy consumption of cooling source equipment, supply-return liquid temperatures in distribution systems, as well as cold plate surface and battery temperatures under continuous charge-discharge conditions in high-temperature/high-humidity environments (40 ℃/30% RH, 30 ℃/30% RH, and 30 ℃/70% RH). Results demonstrate that, compared with 40 ℃/30% RH and 30 ℃/30% RH conditions, the start-stop frequency of compressors and fans decreased by 52%, total cooling system energy consumption increased by 28%, and the longitudinal weighted average battery temperature difference was reduced from 3.14 ℃ to 2.82 ℃. Under high-humidity conditions (30 ℃/70% RH), when the supply liquid temperature was increased from 20—25 ℃ to 24—28 ℃, system energy consumption decreased by 22%, with the maximum battery cell temperature rising by 3 ℃. The average maximum temperature difference decreased by 22.56%, and the longitudinal average temperature difference was reduced from 2.89 ℃ to 2.80 ℃. Ambient temperature, humidity, and supply liquid temperature showed no significant impact on the longitudinal temperature difference across battery cells within the pack.

Key words: commercial and industrial energy storage, liquid cooling, thermal management, high-temperature and high-humidity, battery temperature

中图分类号: