• •
王宇航1(), 苑清扬1, 吴浩3(
), 张博1,2(
), 赵鑫2, 龚洋凯2, 王宁生2
收稿日期:
2025-03-27
修回日期:
2025-04-12
通讯作者:
吴浩,张博
E-mail:32310043@mail.dlut.edu.cn;Zhangbo@dlut.edu.cn
作者简介:
王宇航(2000—),男,硕士研究生,研究方向为电池浸没冷却,E-mail:32310043@mail.dlut.edu.cn;
基金资助:
Yu-hang WANG1(), Qing-yang Yuan1, Bo ZHANG3(
), Xin Zhao1,2(
), Gong2, Yang-kai2, Ning-sheng Wang2
Received:
2025-03-27
Revised:
2025-04-12
Contact:
Bo ZHANG, Xin Zhao
E-mail:32310043@mail.dlut.edu.cn;Zhangbo@dlut.edu.cn
摘要:
针对软包电池组浸没冷却在高倍率放电下的散热问题,构建了3S2P型32Ah软包电池模组的浸没冷却实验平台(冷却介质:壳牌SK-3)。以电池温升、电芯间温差标准差和电芯面温差标准差为评价指标的三维热评估体系分析冷却效果优劣。首先进行了静置与流动浸没冷却的对比实验。后又以放电倍率、流量和电池间距为变量,研究了其对流动浸没冷却系统的冷却效果的影响。对比实验结果表明,静置冷却系统可将3C以下倍率放电的电池温度控制在正常范围,而合理参数配置的流动浸没冷却可将温控范围扩展至5C倍率放电工况。与空气自然对流相比,静置浸没冷却系统在3C放电时可使电池表面温度降低29.79℃,流动浸没冷却进一步降低8.26℃,并减少电芯间温差60.26%;之后通过实验数据分析发现,在低流量条件下,仅增加电芯间距效果改善幅度很小;在小间距条件下,仅增加流量则会恶化温度一致性;此外,通过对Gr/Re²和h的相关分析,电池组内部间距尺寸与冷却介质流量的协同作用,通过影响自然对流与强制对流的强度比例,最终影响电池组的温度分布特征。例如,强制对流不均匀性会导致电芯间温度差较大,系统设计时可以利用自然对流优化设计的温度一致性;最后,以体积能量密度、成组效率和散热效果等评价指标对该浸没冷却系统与文献中提到的其它冷却方法进行了比较,证明了该流动浸没冷却系统优异性能和工程应用价值。
中图分类号:
王宇航, 苑清扬, 吴浩, 张博, 赵鑫, 龚洋凯, 王宁生. 软包电池组大倍率放电浸没冷却系统实验研究[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0272.
Yu-hang WANG, Qing-yang Yuan, Bo ZHANG, Xin Zhao, Gong, Yang-kai, Ning-sheng Wang. Experimental study on immersion cooling system for high rate discharge of soft pack battery pack[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0272.
1 | SHAHJALAL M, SHAMS T, ISLAM M E, et al. A review of thermal management for Li-ion batteries: Prospects, challenges, and issues[J]. Journal of Energy Storage, 2021,39: 102518. |
2 | NIZAMUDDIN A D, HO W S, MUIS Z A, et al. Dual-battery energy storage system targeting using dual battery power pinch analysis[J]. Energy, 2024,313: 133797. |
3 | CHEN K, WANG S, SONG M, et al. Structure optimization of parallel air-cooled battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2017,111: 943-952. |
4 | PAW Y C, ANG E Y M. Battery cycle life assessment for a lift+cruise electric vertical takeoff and landing transporter drone[J]. Journal of Energy Storage, 2023,66: 107493. |
5 | LING Z, WANG F, FANG X, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015,148: 403-409. |
6 | FENG X, ZHENG S, REN D, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019,246: 53-64. |
7 | LIU Z, HUANG J, CAO M, et al. Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling[J]. Applied Thermal Engineering, 2021,185: 116415. |
8 | 陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018,7(06): 1030-1039. |
CHENG T,GAO S,FENG X,et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018,7(06): 1030-1039. | |
9 | HONG S, ZHANG X, CHEN K, et al. Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent[J]. International Journal of Heat and Mass Transfer, 2018,116: 1204-1212. |
10 | 吴超, 王罗亚, 袁子杰, 等. 液冷散热技术在电化学储能系统中的研究进展[J]. 储能科学与技术, 2024,13(10): 3596-3612. |
WU C,WANG L,YUAN Z,et al. Research Progress of Liquid Cooling Heat Dissipation Technology in Electrochemical Energy Storage Systems, 2024,13(10): 3596-3612. | |
11 | 李岳峰, 徐卫潘, 韦银涛, 等. 储能锂电池包浸没式液冷系统散热设计及热仿真分析[J]. 储能科学与技术, 2024,13(10): 3534-3544. |
LI Y,XU W,WEI Y,et al. Heat dissipation design and thermal simulation analysis of submerged liquid cooling system for energy storage lithium battery pack, 2024,13(10): 3534-3544. | |
12 | HAN J, GARUD K S, KANG E, et al. Numerical Study on Heat Transfer Characteristics of Dielectric Fluid Immersion Cooling with Fin Structures for Lithium-Ion Batteries: Symmetry[Z]. 2023: 15. |
13 | DUBEY P, PULUGUNDLA G, SROUJI A K. Direct comparison of immersion and cold-plate based cooling for automotive Li-ion battery modules[J]. Energies, 2021,14(5): 1259. |
14 | CHENG W, CHEN M, OUYANG D, et al. Investigation of the thermal performance and heat transfer characteristics of the lithium-ion battery module based on an oil-immersed cooling structure[J]. Journal of Energy Storage, 2024,79: 110184. |
15 | KARAKOR A, TEKIN V, KORKMAZ S A, et al. PARAMETRIC INVESTIGATION OF IMMERSION TYPE THERMAL MANAGEMENT SYSTEM OF LI-ION POUCH BATTERY MODULE[J]. |
16 | THIRU KUMARAN A, HEMAVATHI S. Optimization of Lithium-ion battery thermal performance using dielectric fluid immersion cooling technique[J]. Process Safety and Environmental Protection, 2024,189: 768-781. |
17 | WANG H, XIA L, ZHU Z, et al. Using fins to enhance heat transfer of cylindrical lithium-ion batteries immersed in electrical insulating oil[J]. Journal of Energy Storage, 2024,99: 113358. |
18 | LI Z, ZHANG H, SHENG L, et al. Liquid-immersed thermal management to cylindrical lithium-ion batteries for their pack applications[J]. Journal of Energy Storage, 2024,85: 111060. |
19 | WU X, LU Y, OUYANG H, et al. Theoretical and experimental investigations on liquid immersion cooling battery packs for electric vehicles based on analysis of battery heat generation characteristics[J]. Energy Conversion and Management, 2024,310: 118478. |
20 | AN Z, SHAH K, JIA L, et al. A parametric study for optimization of minichannel based battery thermal management system[J]. Applied Thermal Engineering, 2019,154: 593-601. |
21 | LI X, HE F, ZHANG G, et al. Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system[J]. Applied Thermal Engineering, 2019,146: 866-880. |
22 | MONIKA K, CHAKRABORTY C, ROY S, et al. Parametric investigation to optimize the thermal management of pouch type lithium-ion batteries with mini-channel cold plates[J]. International Journal of Heat and Mass Transfer, 2021,164: 120568. |
23 | FAIZAN M, PATI S, RANDIVE P. Implications of novel cold plate design with hybrid cooling on thermal management of fast discharging lithium-ion battery[J]. Journal of Energy Storage, 2022,53: 105051. |
24 | WANG H, TAO T, XU J, et al. Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries[J]. Journal of Energy Storage, 2022,46: 103835. |
25 | ADENIRAN A, PARK S. Optimized cooling and thermal analysis of lithium-ion pouch cell under fast charging cycles for electric vehicles[J]. Journal of Energy Storage, 2023,68: 107580. |
26 | DUAN L, ZHOU H, XU W, et al. Design method of multiple inlet/outlet air cooling frame of pouch lithium-ion battery based on thermal-fluid coupling topology optimization[J]. International Journal of Heat and Mass Transfer, 2023,215: 124496. |
27 | JI H, LUO T, DAI L, et al. Topology design of cold plates for pouch battery thermal management considering heat distribution characteristics[J]. Applied Thermal Engineering, 2023,224: 119940. |
28 | LIU Z, XU G, XIA Y, et al. Numerical study of thermal management of pouch lithium-ion battery based on composite liquid-cooled phase change materials with honeycomb structure[J]. Journal of Energy Storage, 2023,70: 108001. |
29 | KAUSTHUBHARAM, KOORATA P K, PANCHAL S, et al. Investigation of the thermal performance of biomimetic minichannel-based liquid-cooled large format pouch battery pack[J]. Journal of Energy Storage, 2024,84: 110928. |
[1] | 陈岳浩, 陈莎, 陈慧兰, 孙小琴, 罗永强. 储能电池组浸没式液冷系统冷却性能模拟研究[J]. 储能科学与技术, 2025, 14(2): 648-658. |
[2] | 杨智颖, 卢伟, 姚嘉, 程阳, 伍德坚, 文海龙. 基于变密度拓扑优化的液冷板散热流道设计[J]. 储能科学与技术, 2025, 14(2): 702-713. |
[3] | 叶锦昊, 侯军辉, 张正国, 凌子夜, 方晓明, 黄思林, 肖质文. 100 Ah磷酸铁锂软包电池的热失控特性及产气行为[J]. 储能科学与技术, 2025, 14(2): 636-647. |
[4] | 巩文豪, 李蒙, 张涛, 张若涛, 刘艳侠. 高能量长续航无人机电池的开发及制备[J]. 储能科学与技术, 2024, 13(8): 2550-2558. |
[5] | 宋旭, 孙楠楠, 曹恒超, 朱桂香, 李孟涵, 刘晓日, 饶中浩. 基于并联蛇形流道的动力电池冷媒直冷热管理系统研究[J]. 储能科学与技术, 2024, 13(8): 2726-2736. |
[6] | 陈国贺, 吕培召, 李孟涵, 饶中浩. 锂离子电池热失控传播特性及其抑制策略研究进展[J]. 储能科学与技术, 2024, 13(7): 2470-2482. |
[7] | 刘松燕, 王卫良, 彭世亮, 吕俊复. 兼顾高/低温环境性能的动力电池热管理系统设计[J]. 储能科学与技术, 2024, 13(7): 2181-2191. |
[8] | 张雅新, 张泉, 娄旭静, 周浩, 陈志文, 龙刚. 集装箱式储能电站两相冷板液冷系统的温控效果研究[J]. 储能科学与技术, 2024, 13(6): 1921-1928. |
[9] | 张云峰, 张学文, 钟威, 蒋杜伟, 陈泽伟, 张杰. 石蜡与低熔点合金双级联相变材料强化板翅式散热器换热性能的数值模拟[J]. 储能科学与技术, 2024, 13(5): 1460-1470. |
[10] | 廖琪, 曹小林, 邓谊柏, 杨耀林, 陈挺. 有轨电车超级电容模组液冷散热仿真分析[J]. 储能科学与技术, 2024, 13(2): 702-711. |
[11] | 宋梦琼, 彭宇, 廖自强. 基于电化学热耦合模型的电池热管理研究[J]. 储能科学与技术, 2024, 13(2): 578-585. |
[12] | 徐鑫甜, 张碧霄, 朱信龙, 杨凯杰. 基于电池箱体开孔的储能电池系统精细化热设计优化研究[J]. 储能科学与技术, 2024, 13(2): 515-525. |
[13] | 唐盼春, 严嵘, 张灿, 孙泽. 堆叠式车载超级电容器热管理方式分析[J]. 储能科学与技术, 2024, 13(2): 483-491. |
[14] | 钱亨, 刘剑, 霍玉雷. 扰流结构对电池热管理系统的传热特性研究[J]. 储能科学与技术, 2024, 13(11): 3889-3897. |
[15] | 吴超, 王罗亚, 袁子杰, 马昌龙, 叶季蕾, 吴宇平, 刘丽丽. 液冷散热技术在电化学储能系统中的研究进展[J]. 储能科学与技术, 2024, 13(10): 3596-3612. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||