储能科学与技术

• •    

软包电池组大倍率放电浸没冷却系统实验研究

王宇航1(), 苑清扬1, 吴浩3(), 张博1,2(), 赵鑫2, 龚洋凯2, 王宁生2   

  1. 1.大连理工大学,大连 116000
    2.大连理工大学宁波研究院,宁波 3150002
    3.康盛股份有限公司,杭州 311706
  • 收稿日期:2025-03-27 修回日期:2025-04-12
  • 通讯作者: 吴浩,张博 E-mail:32310043@mail.dlut.edu.cn;Zhangbo@dlut.edu.cn
  • 作者简介:王宇航(2000—),男,硕士研究生,研究方向为电池浸没冷却,E-mail:32310043@mail.dlut.edu.cn
  • 基金资助:
    宁波市重点研发计划项目《高功率长寿命强安全储能系统模块化技术研究及应用》(2023Z150);宁波重点领域发展对策研究(新型储能领域)(2024R011)

Experimental study on immersion cooling system for high rate discharge of soft pack battery pack

Yu-hang WANG1(), Qing-yang Yuan1, Bo ZHANG3(), Xin Zhao1,2(), Gong2, Yang-kai2, Ning-sheng Wang2   

  1. 1.School of Energy and Power Engineering, Dalian University of Technology, Dalian 116081, China
    2.Ningbo Research Institute of Dalian University of Technology, Ningbo, 315000, China
    3.ZHE JIANG KANG SHENGCO. , LTD, Hangzhou, 311700, China
  • Received:2025-03-27 Revised:2025-04-12
  • Contact: Bo ZHANG, Xin Zhao E-mail:32310043@mail.dlut.edu.cn;Zhangbo@dlut.edu.cn

摘要:

针对软包电池组浸没冷却在高倍率放电下的散热问题,构建了3S2P型32Ah软包电池模组的浸没冷却实验平台(冷却介质:壳牌SK-3)。以电池温升、电芯间温差标准差和电芯面温差标准差为评价指标的三维热评估体系分析冷却效果优劣。首先进行了静置与流动浸没冷却的对比实验。后又以放电倍率、流量和电池间距为变量,研究了其对流动浸没冷却系统的冷却效果的影响。对比实验结果表明,静置冷却系统可将3C以下倍率放电的电池温度控制在正常范围,而合理参数配置的流动浸没冷却可将温控范围扩展至5C倍率放电工况。与空气自然对流相比,静置浸没冷却系统在3C放电时可使电池表面温度降低29.79℃,流动浸没冷却进一步降低8.26℃,并减少电芯间温差60.26%;之后通过实验数据分析发现,在低流量条件下,仅增加电芯间距效果改善幅度很小;在小间距条件下,仅增加流量则会恶化温度一致性;此外,通过对Gr/Re²和h的相关分析,电池组内部间距尺寸与冷却介质流量的协同作用,通过影响自然对流与强制对流的强度比例,最终影响电池组的温度分布特征。例如,强制对流不均匀性会导致电芯间温度差较大,系统设计时可以利用自然对流优化设计的温度一致性;最后,以体积能量密度、成组效率和散热效果等评价指标对该浸没冷却系统与文献中提到的其它冷却方法进行了比较,证明了该流动浸没冷却系统优异性能和工程应用价值。

关键词: 电池组, 软包电池, 浸没冷却, 热管理

Abstract:

In order to solve the heat dissipation problem of the submerged cooling of the soft pack battery pack under high rate discharge, the submerged cooling experiment platform of 3S2P 32Ah soft pack battery module (cooling medium: Shell SK-3) was constructed. The 3D thermal evaluation system is used to analyze the cooling effect by taking the temperature rise of the battery, the standard deviation of temperature difference between cells and the standard deviation of temperature difference between cells. Firstly, the contrast experiment between static cooling and flow immersion cooling was carried out. Then the effect of discharge rate, flow rate and cell spacing on the cooling effect of flow immersion cooling system was studied. The experimental results show that the static cooling system can control the temperature of the battery below 3C in the normal range, and the flow immersion cooling with reasonable parameter configuration can extend the temperature control range to 5C discharge condition. Compared with the natural convection of air, the static submerged cooling system can reduce the battery surface temperature by 29.79℃, the flow submerged cooling system can further reduce 8.26℃, and reduce the temperature difference between cells by 60.26%. After the analysis of the experimental data, it is found that under the condition of low flow, the effect of only increasing the cell spacing is very small. Under the condition of small spacing, only increasing the flow rate will deteriorate the temperature consistency. In addition, through the correlation analysis of Gr/Re² and h, the synergistic effect of the internal spacing size of the battery pack and the flow rate of the cooling medium ultimately affects the temperature distribution characteristics of the battery pack by influencing the intensity ratio of natural convection to forced convection. For example, the inhomogeneity of forced convection will lead to a large temperature difference between cells, so natural convection can be used to optimize the temperature consistency of the system design. Finally, the evaluation indexes such as volumetric energy density, group efficiency and heat dissipation effect are compared with other cooling methods mentioned in the literature, which proves the excellent performance and engineering application value of the flow immersion cooling system.

Key words: Battery Module, Pouch cells, Immersion Cooling, Thermal Management

中图分类号: