储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3742-3754.doi: 10.19799/j.cnki.2095-4239.2025.0301

• 储能系统与工程 • 上一篇    下一篇

基于时序模式注意力机制和孤立森林的电池过充热失控预警方法研究

李昌豪1(), 曹志成2, 汪书苹1, 谢恒3, 张炜鑫2(), 曹元成2   

  1. 1.国网安徽省电力有限公司电力科学研究院,安徽省新型电力系统火灾安全与应急技术重点 实验室(国家电网公司输变电设施火灾防护实验室),安徽 合肥 230601
    2.国网安徽省电力 有限公司,安徽 合肥 230601
    3.华中科技大学电气与电子工程学院,湖北 武汉 430070
  • 收稿日期:2025-03-26 修回日期:2025-05-11 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 张炜鑫 E-mail:346550617@qq.com;weixinzhang@hust.edu.cn
  • 作者简介:李昌豪(1995—),男,硕士研究生,专责/工程师,研究方向为储能安全防护,E-mail:346550617@qq.com
  • 基金资助:
    国家电网有限公司总部管理科技项目资助(5500-202220118A-1-1-ZN)

Warning method for battery-overcharge thermal runaway based on a temporal pattern attention mechanism and an isolated forest algorithm

Changhao LI1(), Zhicheng CAO2, Shuping WANG1, Heng XIE3, Weixin ZHANG2(), Yuancheng CAO2   

  1. 1.Electric Power Science Research Institute of State Grid Anhui Electric Power Co. , Ltd. , Key Laboratory of Fire Safety and Emergency Technology for New Power Systems in Anhui Province (Fire Protection Laboratory for Transmission and Transformation Facilities of State Grid Corporation of China), Hefei 230601, Anhui, China
    2.State Grid Anhui Electric Power Co. , Ltd. , Hefei 230601, Anhui, China
    3.School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430070, Hubei, China
  • Received:2025-03-26 Revised:2025-05-11 Online:2025-10-28 Published:2025-10-20
  • Contact: Weixin ZHANG E-mail:346550617@qq.com;weixinzhang@hust.edu.cn

摘要:

锂离子电池热失控反应迅速且剧烈,能够在储能系统内形成热蔓延,造成巨大损失,成为储能安全领域亟须解决的问题。为满足锂离子电池过充热失控预警的时效性需求,本工作提出了一种基于时序模式注意力机制(TPA)和双向长短期记忆网络(BiLSTM)联合孤立森林的电池过充热失控预警方法。该方法首先通过TPA从多时间步捕获电池状态特征的变化规律,并通过差异化加权关注重要信息;然后利用BiLSTM的双向神经网络结构对电池特征数据进行双向信息提取,提高模型预测精度;最后结合孤立森林算法,利用电池真实数据集建立孤立森林模型并计算电池状态特征的异常分数,通过选取最佳异常分数阈值对电池状态进行分类,实现对电池异常状态的预警。实验结果表明,该方法的F1-score达到0.9509,能够在电池过充前7 s对电池异常状态进行预警,相比温度阈值划分方法提前了252 s。本工作所述方法在提高锂离子电池过充热失控预警的准确性和时效性方面具有重要意义。

关键词: 锂离子电池, 热失控, 预警方法, 机制, 孤立森林

Abstract:

Lithium-ion battery (LIB) thermal runaway proceeds rapidly and violently representing a significant challenging in the field of energy-storage safety, as it can initiate thermal propagation within energy storage systems and lead to losses. To meet the timeliness requirements for early warning of overcharge-induced thermal runaway in LIBs, an early warning method integrating the temporal pattern attention (TPA) mechanism, bidirectional long short-term memory (BiLSTM) network, and isolation forest algorithm is proposed. In this method, the changing patterns of battery-state characteristics across multiple time steps are first captured using TPA, which applies differentiated weighting to focus on the mostvaluable information. Subsequently, the bidirectional neural network structure of BiLSTM is used to extract bidirectional information from battery-characteristic data, thus enhancing the prediction accuracy of the model. Finally, by integrating the isolation forest algorithm, the real battery dataset is used to establish an isolation forest model, which calculates the anomaly scores of battery-state characteristics. Thereafter, the battery states are classified by selecting the optimal anomaly score threshold, enabling early warning of abnormal battery conditions. The experimental results reveal that the proposed method achieves an F1 score of 0.9509 and can provide early warning of abnormal battery conditions 7 s before overcharge-induced thermal runaway; this time is 252 s earlier than that of the temperature threshold method. Overall, the method demonstrated here offers insights into enhancing the accuracy and timeliness of early warning for overcharge-induced thermal runaway in LIBs.

Key words: lithium-ion battery, thermal runaway, warning methods, mechanism, isolation forest

中图分类号: