[1] |
喻航, 张英, 徐超航, 等. 锂电储能系统热失控防控技术研究进展[J]. 储能科学与技术, 2022, 11(8): 2653-2663. DOI: 10.19799/j.cnki. 2095-4239.2022.0116.
|
|
YU H, ZHANG Y, XU C H, et al. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems[J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. DOI: 10.19799/j.cnki.2095-4239.2022. 0116.
|
[2] |
CHEN J Y, XU C S, WANG Q Z, et al. The thermal-gas coupling mechanism of lithium iron phosphate batteries during thermal runaway[J]. Journal of Power Sources, 2025, 625: 235728. DOI: 10.1016/j.jpowsour.2024.235728.
|
[3] |
李涵, 王炎, 华剑锋, 等. 大容量磷酸铁锂电池热失控行为及测试气氛影响规律研究[J]. 电源技术, 2024, 48(8): 1634-1641.
|
|
LI H, WANG Y, HUA J F, et al. Study on thermal runaway behavior and test atmosphere effecting rule of high-capacity lithium iron phosphate battery[J]. Chinese Journal of Power Sources, 2024, 48(8): 1634-1641.
|
[4] |
黄峥, 秦鹏, 石晗, 等. 过热条件下86 Ah磷酸铁锂电池热失控行为研究[J]. 高电压技术, 2022, 48(3): 1185-1191. DOI: 10.13336/j.1003-6520.hve.20210126.
|
|
HUANG Z, QIN P, SHI H, et al. Study on thermal runaway behavior of 86 ah lithium iron phosphate battery under overheat condition[J]. High Voltage Engineering, 2022, 48(3): 1185-1191. DOI: 10.13336/j.1003-6520.hve.20210126.
|
[5] |
宋来丰, 梅文昕, 贾壮壮, 等. 绝热条件下280 Ah大型磷酸铁锂电池热失控特性分析[J]. 储能科学与技术, 2022, 11(8): 2411-2417. DOI: 10.19799/j.cnki.2095-4239.2022.0349.
|
|
SONG L F, MEI W X, JIA Z Z, et al. Analysis of thermal runaway characteristics of 280 Ah large LiFePO4 battery under adiabatic conditions[J]. Energy Storage Science and Technology, 2022, 11(8): 2411-2417. DOI: 10.19799/j.cnki.2095-4239.2022.0349.
|
[6] |
FENG X N, ZHANG F S, HUANG W S, et al. Mechanism of internal thermal runaway propagation in blade batteries[J]. Journal of Energy Chemistry, 2024, 89: 184-194. DOI: 10.1016/j.jechem.2023.09.050.
|
[7] |
叶锦昊, 侯军辉, 张正国, 等. 100 Ah磷酸铁锂软包电池的热失控特性及产气行为[J]. 储能科学与技术, 2025, 14(2): 636-647. DOI: 10. 19799/j.cnki.2095-4239.2024.0764.
|
|
YE J H, HOU J H, ZHANG Z G, et al. Thermal runaway characteristics and gas generation behavior of 100 Ah lithium iron phosphate pouch cell[J]. Energy Storage Science and Technology, 2025, 14(2): 636-647. DOI: 10.19799/j.cnki.2095-4239.2024.0764.
|
[8] |
邓康, 张英, 徐伯乐, 等. 磷酸铁锂电池组燃烧特性研究[J]. 中国安全科学学报, 2019, 29(11): 83-88. DOI: 10.16265/j.cnki.issn1003-3033.2019.11.014.
|
|
DENG K, ZHANG Y, XU B L, et al. Study on combustion characteristics of lithium iron phosphate battery pack[J]. China Safety Science Journal, 2019, 29(11): 83-88. DOI: 10.16265/j.cnki.issn1003-3033.2019.11.014.
|
[9] |
王庭华, 翟宏举, 秦鹏, 等. 模组箱体空间内磷酸铁锂电池热失控及其传播行为研究[J]. 火灾科学, 2022, 31(1): 25-34.
|
|
WANG T H, ZHAI H J, QIN P, et al. Study on the thermal runaway and its propagation behaviors of lithium iron phosphate battery in module box space[J]. Fire Safety Science, 2022, 31(1): 25-34.
|
[10] |
ZHAI H J, CHI M S, LI J Y, et al. Thermal runaway propagation in large format lithium ion battery modules under inclined ceilings[J]. Journal of Energy Storage, 2022, 51: 104477. DOI: 10.1016/j.est.2022.104477.
|
[11] |
SONG L F, HUANG Z H, MEI W X, et al. Thermal runaway propagation behavior and energy flow distribution analysis of 280 Ah LiFePO4 battery[J]. Process Safety and Environmental Protection, 2023, 170: 1066-1078. DOI: 10.1016/j.psep.2022. 12.082.
|
[12] |
陈晔, 李晋, 吴候福, 等. 大容量储能电池模组热失控传播行为与燃爆风险分析[J]. 储能科学与技术, 2024, 13(8): 2803-2812. DOI: 10. 19799/j.cnki.2095-4239.2024.0216.
|
|
CHEN Y, LI J, WU H F, et al. Analysis of thermal runaway propagation and explosion risk of a large battery module for energy storage[J]. Energy Storage Science and Technology, 2024, 13(8): 2803-2812. DOI: 10.19799/j.cnki.2095-4239.2024. 0216.
|
[13] |
FANG J, CAI J N, HE X Z. Experimental study on the vertical thermal runaway propagation in cylindrical Lithium-ion batteries: Effects of spacing and state of charge[J]. Applied Thermal Engineering, 2021, 197: 117399. DOI: 10.1016/j.applthermaleng. 2021.117399.
|
[14] |
WANG Q Z, WANG H B, XU C S, et al. Multidimensional fire propagation of lithium-ion phosphate batteries for energy storage[J]. eTransportation, 2024, 20: 100328. DOI: 10.1016/j.etran. 2024.100328.
|
[15] |
ZHOU Z Z, ZHOU X D, JU X Y, et al. Experimental study of thermal runaway propagation along horizontal and vertical directions for LiFePO4 electrical energy storage modules[J]. Renewable Energy, 2023, 207: 13-26. DOI: 10.1016/j.renene. 2023.03.004.
|
[16] |
GAO P, SONG L F, JIA Z Z, et al. Revealing the contribution of flame spread to vertical thermal runaway propagation for energy storage systems[J]. Journal of Power Sources, 2025, 628: 235897. DOI: 10.1016/j.jpowsour.2024.235897.
|
[17] |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 火灾试验 表面制品的实体房间火试验方法: GB/T 25207—2010[S]. 北京: 中国标准出版社, 2011.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Fire tests—Full-scale room test for surface products: GB/T 25207—2010[S]. Beijing: Standards Press of China, 2011.
|
[18] |
国家市场监督管理总局, 国家标准化管理委员会. 电力储能用锂离子电池: GB/T 36276—2018[S]. 北京: 中国标准出版社, 2018.
|
|
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Lithium ion battery for electrical energy storage: GB/T 36276—2018[S]. Beijing: Standards Press of China, 2018.
|
[19] |
固定式储能系统安装标准: NFPA 855—2023[S].
|
|
Standard for the Installation of Stationary Energy Storage Systems: NFPA 855—2023[S].
|
[20] |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013.
|