储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3552-3563.doi: 10.19799/j.cnki.2095-4239.2025.0140

• 储能测试与评价 • 上一篇    

双层储能电池火蔓延特性及触发过程能量传递机制研究

徐成善1(), 李涵2, 王炎2, 卢兰光1(), 冯旭宁1, 欧阳明高1   

  1. 1.清华大学汽车安全与节能国家重点实验室,北京 100080
    2.青岛理工大学机械与汽车工程学院,山东 青岛 266520
  • 收稿日期:2025-02-22 修回日期:2025-04-09 出版日期:2025-09-28 发布日期:2025-09-05
  • 通讯作者: 卢兰光 E-mail:xuchsh_2013@sina.cn;lulg@tsinghua.edu.cn
  • 作者简介:徐成善(1993—),男,博士,助理研究员,主要从事动力及储能电池系统失效机理,测试建模和安全设计相关研究,E-mail:xuchsh_2013@sina.cn
  • 基金资助:
    国家重点研发计划“储能与智能电网技术”重点专项(2022YFB2404800)

Research on fire propagation characteristics and energy transfer mechanisms during the triggering process in double-layer energy storage batteries

Chengshan XU1(), Han LI2, Yan WANG2, Languang LU1(), Xuning FENG1, Minggao OUYANG1   

  1. 1.State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100080, China
    2.School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
  • Received:2025-02-22 Revised:2025-04-09 Online:2025-09-28 Published:2025-09-05
  • Contact: Languang LU E-mail:xuchsh_2013@sina.cn;lulg@tsinghua.edu.cn

摘要:

储能电站中存在着垂直分布的电池排列结构,下层电池热失控产气在引燃后,火焰会诱发上层电池发生火蔓延。为了探究储能电池火蔓延特性及触发过程的能量传递机制,本工作以100 Ah磷酸铁锂电池为研究对象,通过设计3组双层电池模组火蔓延实验(双层电池数量各为1节、2节和3节),加热触发底部电池开阀后主动引燃热失控气体,记录实验现象和电池温度变化,分析电池温升速率和温升阶梯,进而定量研究在触发顶部电池火蔓延的过程中,底部各节电池的累计传递能量,最后解耦不同路径的传热量。研究结果表明:底部3节电池可以触发顶部电池同时发生热失控,顶部电池最大温升比底部电池高115.9 ℃(22.1%),最大温升速率高6.5 ℃/s(86.7%);顶部电池热失控前存在3段温升阶梯,在火焰射流阶段的平均温升速率约为火焰烘烤阶段的2倍;在火蔓延触发过程中,底部3节电池累计传递至顶部电池的能量分别为249.1 kJ、334.3 kJ和379.7 kJ,其中通过底面传热占比47.5%,通过侧面传热占比52.5%。本研究为储能电池系统安全设计和火蔓延抑制提供重要指导意义和科学价值。

关键词: 储能电站, 磷酸铁锂电池, 热失控, 火蔓延

Abstract:

In energy storage power stations, vertically arranged battery modules are commonly used. When thermal runaway gas produced by lower-layer batteries ignites, it can induce fire propagation to the upper-layer batteries. To investigate the fire propagation characteristics and energy transfer mechanisms during this triggering process, this study employed 100 Ah lithium iron phosphate (LiFePO4) batteries as the research object. Three sets of fire propagation experiments were designed using double-layer battery modules with one, two, and three batteries per layer. The bottom batteries were heated to induce venting, and the thermal runaway gas was actively ignited. Experimental phenomena and temperature variations were recorded, and the temperature rise rates and stages were analyzed. Additionally, the cumulative energy transferred from each bottom battery to the top battery during fire propagation was quantitatively examined, and heat transfer via different paths was decoupled. Results indicate that three bottom batteries can simultaneously trigger thermal runaway in the top batteries. The maximum temperature rise of the top batteries was 115.9℃ (22.1%) higher than that of the bottom batteries, and the maximum temperature rise rate was 6.5 ℃/s (86.7%) higher. Prior to thermal runaway, the top batteries exhibited three temperature rise stages, with the average temperature rise rate during the flame jet stage approximately double that of the flame baking stage. During fire propagation, the cumulative energy transferred from the three bottom batteries to the top battery was 249.1 kJ, 334.3 kJ, and 379.7 kJ, respectively. Heat transfer through the bottom surface accounted for 47.5%, while transfer through the side surface accounted for 52.5%. This study provides important guidance and scientific support for the safety design of energy storage battery systems and fire propagation suppression.

Key words: energy storage power station, lithium iron phosphate batteries, thermal runaway, fire propagation

中图分类号: