[1] |
来鑫, 陈权威, 顾黄辉, 等. 面向"双碳" 战略目标的锂离子电池生命周期评价: 框架、方法与进展[J]. 机械工程学报, 2022, 58(22): 3-18. DOI: 10.3901/JME.2022.22.003.
|
|
LAI X, CHEN Q W, GU H H, et al. Life cycle assessment of lithium-ion batteries for carbon-peaking and carbon-neutrality: Framework, methods, and progress[J]. Journal of Mechanical Engineering, 2022, 58(22): 3-18. DOI: 10.3901/JME.2022.22.003.
|
[2] |
杜常清, 罗冬, 张弛, 等. 锂离子动力电池单体筛选方法研究[J]. 电源技术, 2017, 41(7): 977-980. DOI: 10.3969/j.issn.1002-087X. 2017.07.007.
|
|
DU C Q, LUO D, ZHANG C, et al. Study on screening method of lithium ion power battery[J]. Chinese Journal of Power Sources, 2017, 41(7): 977-980. DOI: 10.3969/j.issn.1002-087X.2017.07.007.
|
[3] |
钟瑶. 基于安全状态的退役动力电池阶梯式筛选方法研究[D]. 沈阳: 沈阳工业大学, 2023. DOI: 10.27322/d.cnki.gsgyu.2023.001519.
|
|
ZHONG Y. Research on stepped sorting method for retired power battery based on safety status[D]. Shenyang: Shenyang University of Technology, 2023. DOI: 10.27322/d.cnki.gsgyu. 2023.001519.
|
[4] |
ZHANG H M, HUANG J Y, HU R H, et al. Echelon utilization of waste power batteries in new energy vehicles: Review of Chinese policies[J]. Energy, 2020, 206: 118178. DOI: 10.1016/j.energy.2020.118178.
|
[5] |
赵光金, 李博文, 胡玉霞, 等. 退役动力电池梯次利用技术及工程应用概述[J]. 储能科学与技术, 2023, 12(7): 2319-2332. DOI: 10.19799/j.cnki.2095-4239.2023.0288.
|
|
ZHAO G J, LI B W, HU Y X, et al. Overview of the echelon utilization technology and engineering application of retired power batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2319-2332. DOI: 10.19799/j.cnki.2095-4239. 2023.0288.
|
[6] |
LAI X, HUANG Y F, DENG C, et al. Sorting, regrouping, and echelon utilization of the large-scale retired lithium batteries: A critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111162. DOI: 10.1016/j.rser.2021.111162.
|
[7] |
尹浩杰. 基于数据驱动的退役电池综合分选及剩余寿命预测方法研究[D]. 济南: 山东大学, 2023. DOI: 10.27272/d.cnki.gshdu. 2023.000943.
|
|
YIN H J. Research on comprehensive sorting and remaining useful life prediction method of retired batteries based on data driven[D]. Jinan: Shandong University, 2023. DOI: 10.27272/d.cnki.gshdu.2023.000943.
|
[8] |
乌伦华. 锂电池一致性分选的模糊泛乘概率积分评测和优化控制[D]. 哈尔滨: 哈尔滨理工大学, 2023. DOI: 10.27063/d.cnki.ghlgu.2023.000740.
|
|
WU L H. Fuzzy generalized multiplicative probabilistic integral evaluation and optimal control for consistent sorting of Li-ion batteries[D]. Harbin: Harbin University of Science and Technology, 2023. DOI: 10.27063/d.cnki.ghlgu.2023.000740.
|
[9] |
范凌峰. 锂离子电池健康状态估计与退役电池分选重组方法研究[D]. 天津: 天津大学, 2022. DOI: 10.27356/d.cnki.gtjdu.2022. 000622.
|
|
FAN L F. Research on state of health estimation of lithium-ion battery and screening method of retired battery[D]. Tianjin: Tianjin University, 2022. DOI: 10.27356/d.cnki.gtjdu.2022.000622.
|
[10] |
冯联友. 锂离子电池不一致性改善措施研究[J]. 电子质量, 2023(12): 103-106.
|
|
FENG L Y. Research on the improvement measures for inconsistency of lithium ion batteries[J]. Electronics Quality, 2023(12): 103-106.
|
[11] |
HE Z Y, WU X J, LI X, et al. The LiFePO4 battery sorting method based on temperature analysis[J]. E3S Web of Conferences, 2021, 236: 01031. DOI: 10.1051/e3sconf/202123601031.
|
[12] |
乔冬冬. 大规模退役锂离子电池的快速筛选与分类方法研究[D]. 上海: 上海理工大学, 2019. DOI: 10.27308/d.cnki.gslgu.2019. 000031.
|
|
QIAO D D. Study on rapid screening and classification of large-scale retired lithium-ion batteries[D]. Shanghai: University of Shanghai for Science & Technology, 2019. DOI: 10.27308/d.cnki.gslgu.2019.000031.
|
[13] |
杨超, 刘征宇, 朱华炳, 等. 基于放电平台期的Wkmeans退役锂离子电池分选方法[J]. 电源技术, 2022, 46(2): 177-181. DOI: 10.3969/j.issn.1002-087X.2022.02.018.
|
|
YANG C, LIU Z Y, ZHU H B, et al. Wkmeans clustering method of retired lithium-ion battery based on discharge plateau period[J]. Chinese Journal of Power Sources, 2022, 46(2): 177-181. DOI: 10.3969/j.issn.1002-087X.2022.02.018.
|
[14] |
薛金花, 陶以彬, 杨波, 等. 基于老化机理分析退役磷酸铁锂电池分选方法[J]. 电源技术, 2020, 44(5): 660-665. DOI: 10.3969/j.issn.1002-087X.2020.05.004.
|
|
XUE J H, TAO Y B, YANG B, et al. Screening method of retired LiFePO4 batteries based on aging mechanism analysis[J]. Chinese Journal of Power Sources, 2020, 44(5): 660-665. DOI: 10.3969/j.issn.1002-087X.2020.05.004.
|
[15] |
杨泓奕, 陈家辉, 汤志明. 基于K均值法与遗传算法的退役动力电池筛选[J]. 电源技术, 2019, 43(12): 2001-2004. DOI: 10.3969/j.issn.1002-087X.2019.12.025.
|
|
YANG H Y, CHEN J H, TANG Z M. Screening decommissioned power batteries based on K-means algorithm and genetic algorithm[J]. Chinese Journal of Power Sources, 2019, 43(12): 2001-2004. DOI: 10.3969/j.issn.1002-087X.2019.12.025.
|
[16] |
王帅, 尹忠东, 郑重, 等. 基于电压曲线的退役电池模组分选方法[J]. 中国电机工程学报, 2020, 40(8): 2691-2705. DOI: 10.13334/j.0258-8013.pcsee.190659.
|
|
WANG S, YIN Z D, ZHENG Z, et al. A sorting method for retired battery modules based on voltage curves[J]. Proceedings of the CSEE, 2020, 40(8): 2691-2705. DOI: 10.13334/j.0258-8013.pcsee.190659.
|
[17] |
李革, 孔祥栋, 孙跃东, 等. 基于产线大数据的锂离子电池一致性动态特性分选方法[J]. 储能科学与技术, 2024, 13(4): 1188-1196. DOI: 10.19799/j.cnki.2095-4239.2023.0819.
|
|
LI G, KONG X D, SUN Y D, et al. Method for sorting the dynamic characteristics of lithium-ion battery consistency based on production line big data[J]. Energy Storage Science and Technology, 2024, 13(4): 1188-1196. DOI: 10.19799/j.cnki.2095-4239.2023.0819.
|
[18] |
谌虹静. 锂离子动力电池剩余寿命预测与退役电池分选方法研究[D]. 南京: 东南大学, 2019. DOI: 10.27014/d.cnki.gdnau.2019. 000607.
|
|
CHEN H J. Research on remaining useful life prediction of lithium-ion battery and screening method of recycling battery[D]. Nanjing: Southeast University, 2019. DOI: 10.27014/d.cnki.gdnau.2019.000607.
|
[19] |
王莉, 谢乐琼, 张干, 等. 锂离子电池一致性筛选研究进展[J]. 储能科学与技术, 2018, 7(2): 194-202.
|
|
WANG L, XIE L Q, ZHANG G, et al. Research progress in the consistency screening of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(2): 194-202.
|
[20] |
王永琛, 倪江锋, 王海波, 等. 锂离子电池一致性分选方法[J]. 储能科学与技术, 2013, 2(5): 522-527. DOI: 10.3969/j.issn.2095-4239.2013.05.011.
|
|
WANG Y C, NI J F, WANG H B, et al. Sorting methods of lithium ion batteries consistency[J]. Energy Storage Science and Technology, 2013, 2(5): 522-527. DOI: 10.3969/j.issn.2095-4239.2013.05.011.
|
[21] |
冀承林. 动力锂离子电池一致性制造工艺研究[D]. 天津: 河北工业大学, 2017.
|
|
JI C L. Study on the manufacturing technology for uniformity of the power lithium-ion battery[D]. Tianjin: Hebei University of Technology, 2017.
|