[1] |
中国能源研究会储能专委会, 中关村储能产业技术联盟. 储能产业研究白皮书2024[R]. 北京: 中关村储能产业技术联盟, 2024.
|
[2] |
PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110(2): 377-382. DOI: 10.1016/S0378-7753(02)00200-8.
|
[3] |
DAI H F, JIANG B, HU X S, et al. Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends[J]. Renewable and Sustainable Energy Reviews, 2021, 138: 110480. DOI: 10.1016/j.rser. 2020. 110480.
|
[4] |
BAIRD A R, ARCHIBALD E J, MARR K C, et al. Explosion hazards from lithium-ion battery vent gas[J]. Journal of Power Sources, 2020, 446: 227257. DOI: 10.1016/j.jpowsour. 2019. 227257.
|
[5] |
AKBARZADEH M, KALOGIANNIS T, JAGUEMONT J, et al. A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module[J]. Applied Thermal Engineering, 2021, 198: 117503. DOI: 10.1016/j.applthermaleng.2021.117503.
|
[6] |
QIN P, SUN J H, YANG X L, et al. Battery thermal management system based on the forced-air convection: A review[J]. eTransportation, 2021, 7: 100097. DOI: 10.1016/j.etran. 2020. 100097.
|
[7] |
JARRETT A, KIM I Y. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245: 644-655. DOI: 10.1016/j.jpowsour.2013.06.114.
|
[8] |
SHANG Z Z, QI H Z, LIU X T, et al. Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system[J]. International Journal of Heat and Mass Transfer, 2019, 130: 33-41. DOI: 10.1016/j.ijheatmasstransfer. 2018.10.074.
|
[9] |
FENG X H, LI Z Z, GU F S, et al. Structural design and optimization of air-cooled thermal management system for lithium-ion batteries based on discrete and continuous variables[J]. Journal of Energy Storage, 2024, 86: 111202. DOI: 10.1016/j.est.2024.111202.
|
[10] |
孙琦, 彭豪, 孟庆国, 等. 极限工况下储能电池包热适应性[J]. 储能科学与技术, 2024, 13(6): 2039-2043. DOI: 10.19799/j.cnki.2095-4239.2023.0956.
|
|
SUN Q, PENG H, MENG Q G, et al. Thermal adaptability of energy storage battery pack in extreme conditions[J]. Energy Storage Science and Technology, 2024, 13(6): 2039-2043. DOI: 10.19799/j.cnki.2095-4239.2023.0956.
|
[11] |
LOU X J, ZHANG Q, ZOU S K, et al. Field study on the temperature uniformity of containerized batteries using a two-phase liquid cooling system under mismatched conditions[J]. International Journal of Refrigeration, 2025, 170: 85-97. DOI: 10. 1016/j.ijrefrig.2024.10.023.
|
[12] |
张雅新, 张泉, 娄旭静, 等. 集装箱式储能电站两相冷板液冷系统的温控效果研究[J]. 储能科学与技术, 2024, 13(6): 1921-1928. DOI: 10.19799/j.cnki.2095-4239.2024.0029.
|
|
ZHANG Y X, ZHANG Q, LOU X J, et al. Study on the temperature control effect of a two-phase cold plate liquid cooling system in a container energy storage power station[J]. Energy Storage Science and Technology, 2024, 13(6): 1921-1928. DOI: 10.19799/j.cnki.2095-4239.2024.0029.
|
[13] |
LI Z, ZHANG J B, WU B, et al. Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples[J]. Journal of Power Sources, 2013, 241: 536-553. DOI: 10.1016/j.jpowsour. 2013. 04.117.
|
[14] |
MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. DOI: 10.1016/0894-1777(88)90043-X.
|