储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3730-3741.doi: 10.19799/j.cnki.2095-4239.2025.0272

• 储能系统与工程 • 上一篇    下一篇

软包电池组大倍率放电浸没冷却系统实验

王宇航1(), 苑清扬1, 吴浩3, 张博1,2(), 赵鑫2, 龚洋凯2, 王宁生2   

  1. 1.大连理工大学能源与动力学院,辽宁 大连 116000
    2.大连理工大学宁波研究院,浙江 宁波 315002
    3.康盛股份有限公司,浙江 杭州 311706
  • 收稿日期:2025-03-19 修回日期:2025-04-12 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 张博 E-mail:32310043@mail.dlut.edu.cn;Zhangbo@dlut.edu.cn
  • 作者简介:王宇航(2000—),男,硕士研究生,研究方向为电池浸没冷却,E-mail:32310043@mail.dlut.edu.cn
  • 基金资助:
    宁波市重点研发计划(2023Z150);宁波重点领域发展对策研究(新型储能领域)(2024R011)

Experimental study on immersion cooling system for high-rate discharge of soft pack battery pack

Yuhang WANG1(), Qingyang YUAN1, Hao WU3, Bo ZHANG1,2(), Xin ZHAO2, Yangkai GONG2, Ningsheng WANG2   

  1. 1.School of Energy and Power Engineering, Dalian University of Technology, Dalian 116000, Liaoning, China
    2.Ningbo Research Institute of Dalian University of Technology, Ningbo 315002, Zhejiang, China
    3.Zhe Jiang Kang Sheng Co. , Ltd. , Hangzhou 311706, Zhejiang, China
  • Received:2025-03-19 Revised:2025-04-12 Online:2025-10-28 Published:2025-10-20
  • Contact: Bo ZHANG E-mail:32310043@mail.dlut.edu.cn;Zhangbo@dlut.edu.cn

摘要:

针对软包电池组浸没冷却系统在高倍率放电下的散热问题,构建了3S2P型32 Ah软包电池模组的浸没冷却实验平台(冷却介质为壳牌SK-3)。以电池温升、电芯间温差标准差和电芯面温差标准差为评价指标的三维热评估体系分析冷却效果优劣。首先进行了静置与流动浸没冷却的对比实验,后又以放电倍率、流量和电池间距为变量,研究了其对流动浸没冷却系统冷却效果的影响。对比实验结果表明,静置冷却系统可将3C以下倍率放电的电池温度控制在正常范围,而合理参数配置的流动浸没冷却可将温控范围扩展至5C倍率放电工况。与空气自然对流相比,静置浸没冷却系统在3C放电时可使电池表面温度降低29.79 ℃,5C放电情况下,流动浸没冷却相比于静置浸没冷将电池表面温度降低8.26 ℃并减小电芯间温差60.2%;之后通过实验数据分析发现,在低流量条件下,仅增加电芯间距对冷却性能改善幅度很小;在小间距条件下,仅增加流量则会恶化温度一致性;此外,通过对Gr/Re2h的相关分析,电池组内部间距尺寸与冷却介质流量的协同作用,通过影响自然对流与强制对流的强度比例,最终影响电池组的温度分布特征。例如,强制对流不均匀会导致电芯间温差较大,系统设计时可以利用自然对流优化设计的温度一致性;最后,以体积能量密度、成组效率和散热效果等评价指标对该浸没冷却系统与文献中提到的其他冷却方法进行比较,证明了该流动浸没冷却系统优异的性能和工程应用价值。

关键词: 电池组, 软包电池, 浸没冷却, 热管理

Abstract:

To address the heat dissipation challenge of submerged cooling for soft-pack battery modules under high-rate discharge, a submerged cooling experimental platform was constructed for 3S2P 32 Ah soft-pack battery module using Shell SK-3 as the cooling medium. A three-dimensional thermal evaluation system was used to analyze the cooling effect based on the temperature increase of the battery, the standard deviation of the temperature differences between cells, and overall temperature uniformity. First, a comparative experiment between static and flow-immersion cooling was conducted. Then, the effects of the discharge rate, coolant flow rate, and cell spacing on the cooling effect of the flow-immersion system were studied. The experimental results show that the static cooling system can maintain the temperature of the battery within safe limits up to a 3C discharge rate, while appropriately configured flow-immersion cooling can extend the effective temperature control range to a 5C discharge rate. Compared with natural air convection, the static submerged cooling system reduced the battery surface temperature by 29.79 ℃, and the flow-submerged cooling system achieved an additional 8.26 ℃ reduction, lowering the temperature difference between cells by 60.2%. The analysis of the experimental data revealed that at low coolant flow rates, simply increasing the cell spacing had a minimal effect. Conversely, with a small cell spacing, increasing the flow rate alone worsened the temperature uniformity. Additionally, the correlation analysis of Gr/Re2 and h indicated that the combined effects of the internal spacing size of the battery pack and the flow rate of the cooling medium ultimately affect the temperature distribution characteristics of the battery pack by influencing the intensity ratio of natural convection to forced convection. For example, the inhomogeneity of forced convection can cause a large temperature difference between cells, suggesting that natural convection can be used to optimize the temperature consistency of the system design. Finally, the evaluation indexes, such as volumetric energy density, group efficiency, and heat dissipation effect, were compared with other cooling methods reported in the literature, confirming the superior performance and strong engineering application value of the flow-immersion cooling system.

Key words: battery module, pouch cells, immersion cooling, thermal management

中图分类号: