[1] |
SHAHJALAL M, SHAMS T, ISLAM M E, et al. A review of thermal management for Li-ion batteries: Prospects, challenges, and issues[J]. Journal of Energy Storage, 2021, 39: 102518. DOI: 10.1016/j.est.2021.102518.
|
[2] |
NIZAMUDDIN A D, HO W S, MUIS Z A, et al. Dual-battery energy storage system targeting using dual battery power pinch analysis[J]. Energy, 2024, 313: 133797. DOI: 10.1016/j.energy.2024.133797.
|
[3] |
CHEN K, WANG S F, SONG M X, et al. Structure optimization of parallel air-cooled battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2017, 111: 943-952. DOI: 10.1016/j.ijheatmasstransfer.2017.04.026.
|
[4] |
PAW Y C, ANG E Y M. Battery cycle life assessment for a lift+cruise electric vertical takeoff and landing transporter drone[J]. Journal of Energy Storage, 2023, 66: 107493. DOI: 10.1016/j.est.2023.107493.
|
[5] |
LING Z Y, WANG F X, FANG X M, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148: 403-409. DOI: 10.1016/j.apenergy.2015.03.080.
|
[6] |
FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. DOI: 10.1016/j.apenergy.2019.04.009.
|
[7] |
LIU Z Q, HUANG J H, CAO M, et al. Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling[J]. Applied Thermal Engineering, 2021, 185: 116415. DOI: 10.1016/j.applthermaleng.2020.116415.
|
[8] |
陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039. DOI: 10.12028/j.issn.2095-4239.2018.0167.
|
|
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039. DOI: 10.12028/j.issn.2095-4239.2018.0167.
|
[9] |
HONG S H, ZHANG X Q, CHEN K, et al. Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent[J]. International Journal of Heat and Mass Transfer, 2018, 116: 1204-1212. DOI: 10.1016/j.ijheatmasstransfer.2017.09.092.
|
[10] |
吴超, 王罗亚, 袁子杰, 等. 液冷散热技术在电化学储能系统中的研究进展[J]. 储能科学与技术, 2024, 13(10): 3596-3612. DOI: 10.19799/j.cnki.2095-4239.2024.0290.
|
|
WU C, WANG L Y, YUAN Z J, et al. Research progress in liquid cooling and heat dissipation technologies for electrochemical energy storage systems[J]. Energy Storage Science and Technology, 2024, 13(10): 3596-3612. DOI: 10.19799/j.cnki.2095-4239.2024.0290.
|
[11] |
钟恺为, 王长宏, 吕琪铭, 等. 锂离子电池浸没式冷却的研究进展[J]. 电池, 2024, 54(2): 265-270. DOI: 10.19535/j.1001-1579.2024.02.026.
|
|
ZHONG K W, WANG C H, LYU Q M, et al. Research progress in immersion cooling for Li-ion battery[J]. Battery Bimonthly, 2024, 54(2): 265-270. DOI: 10.19535/j.1001-1579.2024.02.026.
|
[12] |
HAN J W, GARUD K S, KANG E H, et al. Numerical study on heat transfer characteristics of dielectric fluid immersion cooling with fin structures for lithium-ion batteries[J]. Symmetry, 2023, 15(1): 92. DOI: 10.3390/sym15010092.
|
[13] |
DUBEY P, PULUGUNDLA G, SROUJI A K. Direct comparison of immersion and cold-plate based cooling for automotive Li-ion battery modules[J]. Energies, 2021, 14(5): 1259. DOI: 10.3390/en14051259.
|
[14] |
CHENG W M, CHEN M Y, OUYANG D X, et al. Investigation of the thermal performance and heat transfer characteristics of the lithium-ion battery module based on an oil-immersed cooling structure[J]. Journal of Energy Storage, 2024, 79: 110184. DOI: 10.1016/j.est.2023.110184.
|
[15] |
KARAKOR A, TEKIN V, KORKMAZ S A, et al. Parametric investigation of immersion type thermal management system of Li-ion pouch battery module[C]//Proceedings of the 37th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. Rhodes, Greece, 2024.
|
[16] |
THIRU KUMARAN A, HEMAVATHI S. Optimization of lithium-ion battery thermal performance using dielectric fluid immersion cooling technique[J]. Process Safety and Environmental Protection, 2024, 189: 768-781. DOI: 10.1016/j.psep.2024.06.117.
|
[17] |
WANG H M, XIA L Q, ZHU Z X, et al. Using fins to enhance heat transfer of cylindrical lithium-ion batteries immersed in electrical insulating oil[J]. Journal of Energy Storage, 2024, 99: 113358. DOI: 10.1016/j.est.2024.113358.
|
[18] |
LI Z, ZHANG H, SHENG L, et al. Liquid-immersed thermal management to cylindrical lithium-ion batteries for their pack applications[J]. Journal of Energy Storage, 2024, 85: 111060. DOI: 10.1016/j.est.2024.111060.
|
[19] |
WU X L, LU Y J, OUYANG H S, et al. Theoretical and experimental investigations on liquid immersion cooling battery packs for electric vehicles based on analysis of battery heat generation characteristics[J]. Energy Conversion and Management, 2024, 310: 118478. DOI: 10.1016/j.enconman.2024.118478.
|
[20] |
AN Z, SHAH K, JIA L, et al. A parametric study for optimization of minichannel based battery thermal management system[J]. Applied Thermal Engineering, 2019, 154: 593-601. DOI: 10.1016/j.applthermaleng.2019.02.088.
|
[21] |
LI X X, HE F Q, ZHANG G Q, et al. Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system[J]. Applied Thermal Engineering, 2019, 146: 866-880. DOI: 10.1016/j.applthermaleng.2018.10.061.
|
[22] |
MONIKA K, CHAKRABORTY C, ROY S, et al. Parametric investigation to optimize the thermal management of pouch type lithium-ion batteries with mini-channel cold plates[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120568. DOI: 10.1016/j.ijheatmasstransfer.2020.120568.
|
[23] |
FAIZAN M, PATI S, RANDIVE P. Implications of novel cold plate design with hybrid cooling on thermal management of fast discharging lithium-ion battery[J]. Journal of Energy Storage, 2022, 53: 105051. DOI: 10.1016/j.est.2022.105051.
|
[24] |
WANG H T, TAO T, XU J, et al. Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries[J]. Journal of Energy Storage, 2022, 46: 103835. DOI: 10.1016/j.est.2021.103835.
|
[25] |
ADENIRAN A, PARK S. Optimized cooling and thermal analysis of lithium-ion pouch cell under fast charging cycles for electric vehicles[J]. Journal of Energy Storage, 2023, 68: 107580. DOI: 10.1016/j.est.2023.107580.
|
[26] |
DUAN L B, ZHOU H J, XU W, et al. Design method of multiple inlet/outlet air cooling frame of pouch lithium-ion battery based on thermal-fluid coupling topology optimization[J]. International Journal of Heat and Mass Transfer, 2023, 215: 124496. DOI: 10.1016/j.ijheatmasstransfer.2023.124496.
|
[27] |
JI H S, LUO T B, DAI L M, et al. Topology design of cold plates for pouch battery thermal management considering heat distribution characteristics[J]. Applied Thermal Engineering, 2023, 224: 119940. DOI: 10.1016/j.applthermaleng.2022.119940.
|
[28] |
LIU Z K, XU G Q, XIA Y G, et al. Numerical study of thermal management of pouch lithium-ion battery based on composite liquid-cooled phase change materials with honeycomb structure[J]. Journal of Energy Storage, 2023, 70: 108001. DOI: 10.1016/j.est.2023.108001.
|
[29] |
KAUSTHUBHARAM, KOORATA P K, PANCHAL S, et al. Investigation of the thermal performance of biomimetic minichannel-based liquid-cooled large format pouch battery pack[J]. Journal of Energy Storage, 2024, 84: 110928. DOI: 10.1016/j.est.2024.110928.
|