[1] |
喻航, 张英, 徐超航, 等. 锂电储能系统热失控防控技术研究进展[J]. 储能科学与技术, 2022, 11(8): 2653-2663. DOI: 10.19799/j.cnki.2095-4239.2022.0116.
|
|
YU H, ZHANG Y, XU C H, et al. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems[J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. DOI: 10.19799/j.cnki.2095-4239.2022.0116.
|
[2] |
管敏渊, 沈建良, 徐国华, 等. 锂离子电池储能系统靶向消防装备设计与性能[J]. 储能科学与技术, 2023, 12(4): 1131-1138. DOI: 10.19799/j.cnki.2095-4239.2022.0719.
|
|
GUAN M Y, SHEN J L, XU G H, et al. Design and performance research of targeted-fire fighting equipment for lithium-ion battery energy storage system[J]. Energy Storage Science and Technology, 2023, 12(4): 1131-1138. DOI: 10.19799/j.cnki.2095-4239.2022.0719.
|
[3] |
FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. DOI: 10.1016/j.apenergy.2019.04.009.
|
[4] |
周剑文. 锂离子电池热失控建模与热蔓延抑制研究[D]. 济南: 山东大学, 2022. DOI: 10.27272/d.cnki.gshdu.2022.004758.
|
|
ZHOU J W. Thermal runaway modeling and thermal spread suppression of lithium-ion batteries[D]. Jinan: Shandong University, 2022. DOI: 10.27272/d.cnki.gshdu.2022.004758.
|
[5] |
李钊, 陈才星, 牛慧昌, 等. 锂离子电池热失控早期预警特征参数分析[J]. 消防科学与技术, 2020, 39(2): 146-149.
|
|
LI Z, CHEN C X, NIU H C, et al. Characteristic parameter analysis of thermal runaway early warning of lithium-ion battery[J]. Fire Science and Technology, 2020, 39(2): 146-149.
|
[6] |
OMAER FARUQ GONI M, MONDAL M N I, RIAZUL ISLAM S M, et al. Diagnosis of malaria using double hidden layer extreme learning machine algorithm with CNN feature extraction and parasite inflator[J]. IEEE Access, 2023, 11: 4117-4130.
|
[7] |
王娜, 李强. 大数据分析管理系统在新能源汽车事故分析中的应用[J]. 时代汽车, 2024(2): 192-194. DOI: 10.3969/j.issn.1672-9668. 2024.02.061.
|
|
WANG N, LI Q. Application of big data analysis management system in new energy vehicle accident analysis[J]. Auto Time, 2024(2): 192-194. DOI: 10.3969/j.issn.1672-9668.2024.02.061.
|
[8] |
周炜航, 叶青, 叶蕾, 等. 锂离子电池内温度场健康状态分布式光纤原位监测技术研究[J]. 中国激光, 2020, 47(12): 1204002. DOI: 10.3788/CJL202047.1204002.
|
|
ZHOU W H, YE Q, YE L, et al. Distributed optical fiber in situ monitoring technology for a healthy temperature field in lithium ion batteries[J]. Chinese Journal of Lasers, 2020, 47(12): 1204002. DOI: 10.3788/CJL202047.1204002.
|
[9] |
蒋建杰, 楼平, 徐国华, 等. 基于预测误差的锂离子电池热失控预警方法研究[J]. 储能科学与技术, 2024, 13(11): 4187-4197. DOI: 10.19799/j.cnki.2095-4239.2024.0539.
|
|
JIANG J J, LOU P, XU G H, et al. Research on lithium-ion battery thermal runaway early warning method based on prediction error[J]. Energy Storage Science and Technology, 2024, 13(11): 4187-4197. DOI: 10.19799/j.cnki.2095-4239.2024.0539.
|
[10] |
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. DOI: 10.1016/j.pecs.2019.03.002.
|
[11] |
JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. DOI: 10.1016/j.joule.2020.05.016.
|
[12] |
杨启帆, 马宏忠, 段大卫, 等. 基于气体特性的锂离子电池热失控在线预警方法[J]. 高电压技术, 2022, 48(3): 1202-1211. DOI: 10.13336/j.1003-6520.hve.20210261.
|
|
YANG Q F, MA H Z, DUAN D W, et al. Thermal runaway online warning method for lithium-ion battery based on gas characteristics[J]. High Voltage Engineering, 2022, 48(3): 1202-1211. DOI: 10.13336/j.1003-6520.hve.20210261.
|
[13] |
梅文昕, 段强领, 王青山, 等. 大型磷酸铁锂电池高温热失控模拟研究[J]. 储能科学与技术, 2021, 10(1): 202-209. DOI: 10.19799/j.cnki.2095-4239.2020.0249.
|
|
MEI W X, DUAN Q L, WANG Q S, et al. Thermal runaway simulation of large-scale lithium iron phosphate battery at elevated temperatures[J]. Energy Storage Science and Technology, 2021, 10(1): 202-209. DOI: 10.19799/j.cnki.2095-4239.2020.0249.
|
[14] |
PAN Y, FENG X N, ZHANG M X, et al. Internal short circuit detection for lithium-ion battery pack with parallel-series hybrid connections[J]. Journal of Cleaner Production, 2020, 255: 120277. DOI: 10.1016/j.jclepro.2020.120277.
|
[15] |
GAO W K, ZHENG Y J, OUYANG M G, et al. Micro-short-circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 2132-2142. DOI: 10.1109/TIE.2018.2838109.
|
[16] |
FENG X N, WENG C H, OUYANG M G, et al. Online internal short circuit detection for a large format lithium ion battery[J]. Applied Energy, 2016, 161: 168-180. DOI: 10.1016/j.apenergy. 2015.10.019.
|
[17] |
黄彧, 王占国, 张言茹, 等. 基于离群点检测的动力电池一致性快速辨识方法[J]. 电测与仪表, 2023, 60(10): 66-72. DOI: 10.19753/j.issn1001-1390.2023.10.011.
|
|
HUANG Y, WANG Z G, ZHANG Y R, et al. A fast identification method of power battery consistency based on outlier detection[J]. Electrical Measurement & Instrumentation, 2023, 60(10): 66-72. DOI: 10.19753/j.issn1001-1390.2023.10.011.
|
[18] |
刘鹏, 吴志强, 张照生, 等. 基于电压频域特征和异常系数的动力电池故障诊断方法[J]. 中国公路学报, 2022, 35(8): 89-104. DOI: 10.19721/j.cnki.1001-7372.2022.08.009.
|
|
LIU P, WU Z Q, ZHANG Z S, et al. Fault diagnosis for battery systems based on voltage frequency-domain indicator and abnormal coefficient[J]. China Journal of Highway and Transport, 2022, 35(8): 89-104. DOI: 10.19721/j.cnki.1001-7372.2022.08.009.
|
[19] |
HONG J C, WANG Z P, CHEN W, et al. Synchronous multi-parameter prediction of battery systems on electric vehicles using long short-term memory networks[J]. Applied Energy, 2019, 254: 113648. DOI: 10.1016/j.apenergy.2019.113648.
|
[20] |
ZHOU Z X, HUBER N R, INOUE A, et al. Multislice input for 2D and 3D residual convolutional neural network noise reduction in CT[J]. Journal of Medical Imaging, 2023, 10(1): 014003. DOI: 10.1117/1.JMI.10.1.014003.
|
[21] |
姚越, 刘达. 基于注意力机制的卷积神经网络-长短期记忆网络的短期风电功率预测[J]. 现代电力, 2022, 39(2): 212-218. DOI: 10. 19725/j.cnki.1007-2322.2021.0108.
|
|
YAO Y, LIU D. Short-term wind power forecasting based on attention mechanism of CNN-LSTM[J]. Modern Electric Power, 2022, 39(2): 212-218. DOI: 10.19725/j.cnki.1007-2322.2021.0108.
|
[22] |
CHANG S Z, DU B, ZHANG L P. A subspace selection-based discriminative forest method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4033-4046. DOI: 10.1109/TGRS.2019.2960391.
|
[23] |
OJO O, LANG H X, KIM Y, et al. A neural network based method for thermal fault detection in lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4068-4078. DOI: 10.1109/TIE.2020.2984980.
|
[24] |
LI D, LIU P, ZHANG Z S, et al. Battery thermal runaway fault prognosis in electric vehicles based on abnormal heat generation and deep learning algorithms[J]. IEEE Transactions on Power Electronics, 2022, 37(7): 8513-8525. DOI: 10.1109/TPEL.2022. 3150026.
|
[25] |
CHEN Y, XU M, WU Z, et al. Enhanced CNN-LSTM model with self-attention mechanism for time series forecasting[J]. IEEE Access, 2023, 11: 34567-34578.
|