储能科学与技术

• 储能科学与技术 •    

氧化亚硅电芯容量衰减机制分析

王怡1(), 李束炜1,2, 陈学兵1, 王愿习1, 王雪锋2(), 李泓1,2()   

  1. 1. 天目湖先进储能技术研究院有限公司,江苏 溧阳 213300
    2. 中国科学院物理研究所,北京 100190
  • 收稿日期:2025-09-09 修回日期:2025-10-23
  • 通讯作者: 王雪锋,李泓 E-mail:wangyi@aesit.com.cn;wxf@iphy.ac.cn;hli@iphy.ac.cn
  • 作者简介:王怡(1992—),女,博士,研究方向为电池失效分析与逆向分析,E-mail:wangyi@aesit.com.cn
  • 基金资助:
    国家重点研发计划(2022YFB2502200);江苏省碳达峰碳中和科技创新专项资金项目(BE2022002);中国博士后科学基金面上资助(2024M762391)

Capacity fading mechanism analysis of silicon oxide cell

Yi WANG1(), Shuwei LI1,2, Xuebing CHEN1, Yuanxi WANG1, Xuefeng WANG2(), Hong LI1,2()   

  1. 1. Tianmu Lake Institute of Advanced Energy Storage Technologies Co. Ltd. , Liyang 213300, Jiangsu, China
    2. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2025-09-09 Revised:2025-10-23
  • Contact: Xuefeng WANG, Hong LI E-mail:wangyi@aesit.com.cn;wxf@iphy.ac.cn;hli@iphy.ac.cn

摘要:

为提升氧化亚硅负极在全电池中的电化学性能,本研究针对常规硅氧材料及预镁化硅氧材料与LiNixCoyAl1-x-yO2(NCA)正极组成的电芯,在室温和高温条件下的循环容量衰减机制进行了系统分析。通过综合测试与失效分析,获取了关键材料在结构、组成和表界面性质等方面的重要信息,并结合定量分析揭示出影响电池性能的关键因素。结果表明,无论是常规硅氧还是预镁硅氧电芯,负极在循环过程中持续消耗活性锂并形成固态电解质界面(SEI)膜,是导致电芯在室温和高温下容量衰减的主要原因。除了SEI膜本身的不稳定性和持续生长之外,预镁硅氧在锂脱嵌过程中体相结构不稳定,发生颗粒开裂,暴露出新鲜表面,进一步加剧了对活性锂的消耗,因此其循环性能反而低于常规硅氧材料。尽管正极也观察到一定的结构衰减(Li/Ni混排加剧)和阻抗上升,但其容量损失主要受限于体系中可用活性锂的不足,并非全电池失效的直接原因。本研究从界面与结构稳定性的角度,为高首效硅氧负极材料及其匹配电芯的设计优化提供了关键依据。

关键词: 预镁化, 氧化亚硅, 容量衰减

Abstract:

To improve the electrochemical performance of silicon oxide anode in the full cell, this work takes conventional silicon oxide, pre-magnesium silicon oxide combined with LiNixCoyAl1-x-yO2 (NCA) cathode as the full cell and analyzes their mechanism of capacity fading at room temperature and high temperature. Through testing and failure analysis, the structure, composition and surface interface of key materials were obtained. Combined with quantitative analysis, the key factors influencing cell performance were identified. The results indicate that, for both conventional and pre-magnesiated silicon oxide cells, the continuous consumption of active lithium and the formation of a solid electrolyte interface (SEI) film at the anode during cycling are the main reasons for capacity degradation at both room and elevated temperatures. In addition to the instability and continuous growth of the SEI film, the bulk phase structure of the pre-magnesium silicon oxide is unstable in the process of lithium removal, and the particle cracking exposes the new surface, leading to the consumption of more active lithium in the SEI. Therefore, its cycling performance is inferior to that of conventional silicon oxide anode. Although structural degradation (e.g., increased Li/Ni mixing) and impedance rise are also observed at the cathode, the associated capacity loss is primarily constrained by the insufficient available lithium in the system, rather than being the direct cause of full-cell failure. This study provides critical insights from the perspective of interfacial and structural stability, offering important guidance for the design and optimization of high‑initial‑coulombic‑efficiency SiOₓ anode materials and their compatible full cells.

Key words: pre-magnesium, silicon oxide, capacity fading

中图分类号: