• 储能科学与技术 •
王怡1(
), 李束炜1,2, 陈学兵1, 王愿习1, 王雪锋2(
), 李泓1,2(
)
收稿日期:2025-09-09
修回日期:2025-10-23
通讯作者:
王雪锋,李泓
E-mail:wangyi@aesit.com.cn;wxf@iphy.ac.cn;hli@iphy.ac.cn
作者简介:王怡(1992—),女,博士,研究方向为电池失效分析与逆向分析,E-mail:wangyi@aesit.com.cn;
基金资助:
Yi WANG1(
), Shuwei LI1,2, Xuebing CHEN1, Yuanxi WANG1, Xuefeng WANG2(
), Hong LI1,2(
)
Received:2025-09-09
Revised:2025-10-23
Contact:
Xuefeng WANG, Hong LI
E-mail:wangyi@aesit.com.cn;wxf@iphy.ac.cn;hli@iphy.ac.cn
摘要:
为提升氧化亚硅负极在全电池中的电化学性能,本研究针对常规硅氧材料及预镁化硅氧材料与LiNixCoyAl1-x-yO2(NCA)正极组成的电芯,在室温和高温条件下的循环容量衰减机制进行了系统分析。通过综合测试与失效分析,获取了关键材料在结构、组成和表界面性质等方面的重要信息,并结合定量分析揭示出影响电池性能的关键因素。结果表明,无论是常规硅氧还是预镁硅氧电芯,负极在循环过程中持续消耗活性锂并形成固态电解质界面(SEI)膜,是导致电芯在室温和高温下容量衰减的主要原因。除了SEI膜本身的不稳定性和持续生长之外,预镁硅氧在锂脱嵌过程中体相结构不稳定,发生颗粒开裂,暴露出新鲜表面,进一步加剧了对活性锂的消耗,因此其循环性能反而低于常规硅氧材料。尽管正极也观察到一定的结构衰减(Li/Ni混排加剧)和阻抗上升,但其容量损失主要受限于体系中可用活性锂的不足,并非全电池失效的直接原因。本研究从界面与结构稳定性的角度,为高首效硅氧负极材料及其匹配电芯的设计优化提供了关键依据。
中图分类号:
王怡, 李束炜, 陈学兵, 王愿习, 王雪锋, 李泓. 氧化亚硅电芯容量衰减机制分析[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0814.
Yi WANG, Shuwei LI, Xuebing CHEN, Yuanxi WANG, Xuefeng WANG, Hong LI. Capacity fading mechanism analysis of silicon oxide cell[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0814.
表4
常规硅氧和预镁硅氧负极表面的EDS结果"
| At% | O | C | Si | F | P | Mg | Cu | |
|---|---|---|---|---|---|---|---|---|
| 常规硅氧负极 | Fresh | 37.57 | 29.27 | 33.16 | / | / | / | / |
| 25°C-500cys | 41.71 | 31.35 | 25.54 | 1.40 | / | / | / | |
| 45°C-500cys | 43.97 | 30.53 | 22.32 | 2.63 | 0.54 | / | / | |
| 预镁硅氧负极 | Fresh | 33.22 | 31.11 | 31.41 | / | 0.13 | 3.64 | 0.49 |
| 25°C-500cys | 40.38 | 31.27 | 20.71 | 2.47 | 0.84 | 4.33 | / | |
| 45°C-500cys | 44.66 | 24.32 | 20.03 | 4.19 | 1.39 | 5.43 | / | |
表5
常规硅氧,预镁硅氧负极因SEI生长导致的容量损失"
| Fresh | 25°C-500cys | 45°C-500cys | ||
|---|---|---|---|---|
| 常规硅氧负极 | 总活性锂损失 /mAh | 0.81 | 1.18 | 1.27 |
| 因极化未脱出的锂损失 /mAh | 0.108 | 0.090 | 0.061 | |
| 因SEI生长导致的锂损失 /mAh | 0.70 | 1.09 | 1.21 | |
| 因SEI生长导致的锂损失增加比例/% | / | 55.3 | 71.5 | |
| 预镁硅氧负极 | 总活性锂损失/mAh | 0.74 | 1.21 | 1.37 |
| 因极化未脱出的锂损失/mAh | 0.116 | 0.088 | 0.08 | |
| 因SEI生长导致的锂损失 /mAh | 0.62 | 1.13 | 1.29 | |
| 因SEI生长导致的锂损失增加比例 /% | / | 81.7 | 108 |
表9
循环前后常规硅氧和预镁硅氧电芯各容量损失原因及容量(mAh/cm2 )"
| 全电池极化损失容量 | SEI中锂对应的容量 | 负极因极化未脱出的锂容量 | 正极容量 | 负极容量 | ||
|---|---|---|---|---|---|---|
| 常规硅氧电芯 | Fresh | / | 0.70 | 0.11 | 4.25 | 4.47 |
| 25°C-500cys | 0.12 | 1.09 | 0.09 | 3.89 | 4.46 | |
| 45°C-500cys | 0.14 | 1.21 | 0.06 | 3.54 | 4.43 | |
| 预镁硅氧电芯 | Fresh | / | 0.62 | 0.12 | 4.25 | 4.34 |
| 25°C-500cys | 0.11 | 1.12 | 0.09 | 3.80 | 4.32 | |
| 45°C-500cys | 0.15 | 1.29 | 0.07 | 3.28 | 4.25 |
| [1] | GE M, CAO C, BIESOLD G M, et al. Recent Advances in Silicon‐Based Electrodes: From Fundamental Research toward Practical Applications [J]. Advanced Materials, 2021, 33(16): 2004577. |
| [2] | ZHAO H, LI J, ZHAO Q, et al. Si-Based Anodes: Advances and Challenges in Li-Ion Batteries for Enhanced Stability [J]. Electrochemical Energy Reviews, 2024, 7(1): 11. |
| [3] | KIM N, KIM Y, SUNG J, et al. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries [J]. Nature Energy, 2023, 8(9): 921-33. |
| [4] | BHUJBAL A V, NG K L, KHAZRAEI S, et al. Recent Advances in Prelithiation of Silicon Anode: Enhanced Strategy for Boosting Practicability of Li-Ion Battery [J]. Journal of The Electrochemical Society, 2023, 170(8). |
| [5] | FANG Q, XU S, SHA X, et al. Interfacial degradation of silicon anodes in pouch cells [J]. Energy & Environmental Science, 2024, 17(17): 6368-76. |
| [6] | YAN W, CHEN Z, SU Y, et al. Recent Progress in Silicon‐Based Anodes for High‐Energy Lithium‐Ion Batteries: From the Perspective of "Size Effects" [J]. Carbon Energy, 2025: 2408285. |
| [7] | TIAN K, SONG Z, ZHOU Q, et al. Silicon-carbon anode with high interfacial stability by a facile thermal reaction involving alkaline nitrogenous carbon source for lithium ion batteries [J]. Journal of Energy Storage, 2023, 72: 108401. |
| [8] | HE Z, ZHANG C, ZHU Z, et al. Advances in Carbon Nanotubes and Carbon Coatings as Conductive Networks in Silicon‐based Anodes [J]. Advanced Functional Materials, 2024, 34(48): 2408285. |
| [9] | LI Y, LI Q, CHAI J, et al. Si-based Anode Lithium-Ion Batteries: A Comprehensive Review of Recent Progress [J]. ACS Materials Letters, 2023, 5(11): 2948-70. |
| [10] | MAN Q, AN Y, LIU C, et al. Interfacial design of silicon/carbon anodes for rechargeable batteries: A review [J]. Journal of Energy Chemistry, 2023, 76: 576-600. |
| [11] | SUNG J, KIM N, MA J, et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack [J]. Nature Energy, 2021, 6(12): 1164-75. |
| [12] | ZHAO P-Y, ZHANG S, CHOY K-L, et al. Silicon negative electrodes for lithium-ion batteries: challenges, advances, and future prospects [J]. Materials Horizons, 2025, 12(17): 6440-84. |
| [13] | 周军华,罗飞,褚赓,刘柏男,陆浩,郑杰允,李泓,黄学杰,陈立泉. 锂离子电池纳米硅碳负极材料研究进展 [J]. 储能科学与技术, 2020, 9(02): 569-82. |
| ZHOU Junhua, LUO Fei, CHU Geng, LIU Bonan, LU Hao, ZHENG Jieyun, LI Hong, HUANG Xuejie, CHEN Liquan. Research progress on nano silicon-carbon anode materials for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 569-582. | |
| [14] | XIAO Z, WU H, QUAN L, et al. Micro-sized CVD-derived Si–C anodes: challenges, strategies, and prospects for next-generation high-energy lithium-ion batteries [J]. Energy & Environmental Science, 2025, 18(9): 4037-52. |
| [15] | LI H, LI H, YANG Z, et al. SiOx Anode: From Fundamental Mechanism toward Industrial Application [J]. Small, 2021, 17(51): 2102641. |
| [16] | JI S, SONG R, YUAN H, et al. Improving the initial Coulombic efficiency of SiO anode materials for lithium ion batteries by carbon coating and prelithiation [J]. Journal of Electroanalytical Chemistry, 2024, 959: 118141. |
| [17] | 张策,李思吾,谢佳. 合金型负极预锂化技术研究进展 [J]. 储能科学与技术, 2022, 11(05): 1383-400. |
| Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes[J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. | |
| [18] | TIAN Y F, LI G, XU D X, et al. Micrometer‐Sized SiMgyOx with Stable Internal Structure Evolution for High‐Performance Li‐Ion Battery Anodes [J]. Advanced Materials, 2022, 34(15): 2200672. |
| [19] | 许陈程 王, 李爽, 蒋江民, 鞠治成. 锂离子电池预锂化技术研究进展及工程化应用展望 [J]. 储能科学与技术, 2025, 14(03): 930-46. |
| Chencheng XU, Zhan WANG, Shuang LI, Jiangmin JIANG, Zhicheng JU. Research progress and engineering application prospects of prelithiation technology for lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(3): 930-946. | |
| [20] | SONG C, ZHANG C, YUAN Q, et al. General Prelithiation Approaches and the Corresponding Full Cell Design [J]. Advanced Materials, 2025: e08874. |
| [21] | CUI Z, MANTHIRAM A. Thermal Stability and Outgassing Behaviors of High‐nickel Cathodes in Lithium‐ion Batteries [J]. Angewandte Chemie International Edition, 2023, 62(43): e202307243. |
| [22] | 程广玉,刘新伟,梅悦旎,顾洪汇,杨丞,王可. 锂离子电池高温贮存容量衰减分析 [J]. 储能科学与技术, 2022, 11(05): 1339-49. |
| Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage[J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. | |
| [23] | SUN J, LV L, LI Y, et al. In Situ Solid Conversion into Mechanically Adaptive LiF‐Rich Solid Electrolyte Interphase via MgF2 Precursor on Si Surface in Lithium‐Ion Batteries [J]. Angewandte Chemie International Edition, 2025, 64(30): e202507688. |
| [24] | LI S, LI Y, ZHANG Z, et al. Interplays between TM migration, cation mixing and oxygen defects and their impacts on degradation of layer-structured oxide cathode materials [J]. Energy Storage Materials, 2025, 79: 104337. |
| [25] | YUAN J, QIN Z, HUANG H, et al. Progress in the prognosis of battery degradation and estimation of battery states [J]. Science China Materials, 2024, 67(4): 1014-41. |
| [1] | 钟晓晖, 李将渊, 陆玮, 张乾能, 张辉, 郑卓群, 解晶莹, 罗英. 不同荷电区间钛酸锂电池循环容量衰减机制研究[J]. 储能科学与技术, 2025, 14(8): 2960-2969. |
| [2] | 段永龙, 滑夏, 韩子娇, 谢冰, 胡姝博, 李爱魁. 全钒液流电池容量衰减与抑制技术研究进展[J]. 储能科学与技术, 2025, 14(6): 2540-2554. |
| [3] | 赵瑞瑞, 彭燕秋, 赖学君, 吴志隆, 高杰, 许文成, 王立娜, 丁沁, 方永进, 曹余良. 焦磷酸磷酸铁钠基钠离子电池日历老化容量衰减机理研究[J]. 储能科学与技术, 2024, 13(11): 4124-4132. |
| [4] | 汪红辉, 刘一凡, 储德韧. 不同荷电状态钛酸锂电池高温日历老化研究[J]. 储能科学与技术, 2023, 12(8): 2606-2614. |
| [5] | 宋缙华, 张兴浩, 丰震河, 程广玉, 顾洪汇, 顾海涛, 王可. 基于原位参比的氧化亚硅-石墨复合负极循环衰减机制[J]. 储能科学与技术, 2023, 12(4): 1059-1065. |
| [6] | 俎梦杨, 张梦, 李子坤, 黄令. 高镍NCA、NCM及NCMA材料循环容量衰减机理研究[J]. 储能科学与技术, 2023, 12(1): 51-60. |
| [7] | 刘杭鑫, 陈现涛, 孙强, 赵晨曦. 软包锂离子电池真空环境下循环性能特性[J]. 储能科学与技术, 2022, 11(6): 1806-1815. |
| [8] | 程广玉, 刘新伟, 梅悦旎, 顾洪汇, 杨丞, 王可. 锂离子电池高温贮存容量衰减分析[J]. 储能科学与技术, 2022, 11(5): 1339-1349. |
| [9] | 任璞, 王顺利, 何明芳, 范永存, 曹文, 谢伟. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743. |
| [10] | 赵鹤, 韩策, 程小露, 郝维健, 徐涵颖, 耿萌萌, 杨凯, 赵丰刚, 邱新平. 采用阳极预锂化技术的锂离子电池高倍率老化容量衰减机理研究[J]. 储能科学与技术, 2021, 10(2): 454-461. |
| [11] | 赵保国,李克锋,王冠,刘虹,史佳超,尤梅,张晓霞,谢巧. 锌银贮备电池加速寿命试验方法研究[J]. 储能科学与技术, 2018, 7(1): 141-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||