储能科学与技术 ›› 2016, Vol. 5 ›› Issue (3): 268-284.doi: 10.3969/j.issn.2095-4239.2016.03.003
王跃生,容晓晖,徐淑银,胡勇胜,李 泓,陈立泉
收稿日期:
2016-04-01
修回日期:
2016-04-15
出版日期:
2016-05-01
发布日期:
2016-05-01
通讯作者:
Institute of Physics, Chinese Academy of Sciences
作者简介:
王跃生(1986—),男,博士研究生,研究方向为钠离子电池电极材料,E-mail:wys_shuicheng@163.com
WANG Yuesheng, RONG Xiaohui, XU Shuyin, HU Yongsheng, LI Hong, CHEN Liquan
Received:
2016-04-01
Revised:
2016-04-15
Online:
2016-05-01
Published:
2016-05-01
摘要: 随着风能、太阳能等可再生能源的不断发展,储能作为影响其发展的关键技术越来越受到人们的关注。在储能领域,锂离子电池以高能量密度、长循环寿命、高电压等诸多优点在电子领域已得到广泛的应用,并成为未来电动汽车动力电池的最佳选择。但因锂资源储量有限、分布不均匀,而且原材料成本比较高,所以锂离子电池在电网大规模储能方面的应用遇到了瓶颈。与锂相比,钠不但具有与锂相似的物理化学性质,更具有资源丰富、分布广泛、原料成本低廉等优势。近些年室温钠离子电池再次引起了人们的研究兴趣,特别是在电网储能方面表现出极大的应用潜力。虽然目前已报道了多种钠离子电池电极材料,但大都离实用化以及进一步产业化尚有一定的距离。本文重点介绍一些性能较为突出的室温钠离子电池电极材料,并指出要实现钠离子电池的产业化,需要开发空气中稳定、高安全、高容量、高倍率、循环稳定、低成本的新型正、负极材料。
王跃生,容晓晖,徐淑银,胡勇胜,李 泓,陈立泉. 室温钠离子储能电池电极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 268-284.
WANG Yuesheng, RONG Xiaohui, XU Shuyin, HU Yongsheng, LI Hong, CHEN Liquan. Recent progress of electrode materials for room-temperature sodium-ion stationary batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 268-284.
[1] ZU C X [2] 2016年4月第一周碳酸锂市场行情走势分析[2016-04-12][N/OL]. http://www.askci.com/news/chanye/20160412/1052518296.shtml.
The analysis of the Lithium carbonate market trend in the first week in April 2016[2016-04-12]. http://www.askci.com/news/chanye/20160412/
1052518296.shtml. [3]
[4]
[5]
[7] DELMAS C
[6] PAN H
[8] BERTHELOT R [9] MENDIBOURE Avs. LiCrO2[J]. Electrochemistry Communications
[1] ZU C X,LI H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science,2011,4(8):2614-2624. [2] 2016年4月第一周碳酸锂市场行情走势分析[ The analysis of the Lithium carbonate market trend in the first week in April 2016[ [3] 王跃生. 室温钠离子储能电池含钛氧化物电极材料研究[D]. 北京:中国科学院大学,2015. WANG Yuesheng. Study on the titanium oxide electrode materials for room temperature sodium ion energy storage battery[D]. Beijing:University of the Chinese Academy of Sciences,2015. [4] 王红,廖小珍,颉莹莹,等. 新型移动式钠离子电池储能系统设计与研究[J]. 储能科学与技术,2016,5(1):65-68. WANG Hong,LIAO Xiaozhen,XIE Yingying,et al. Design and investigation on portable energy storage device based on sodium-ion batteries[J]. Energy Storage Science and Technology,2016,5(1):65-68. [5] 方 铮,曹余良,胡勇胜,等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术,2016,5(2):149-158. FANG Zheng, [6] PAN H,HU Y S,CHEN L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science,2013,6(8):2338-2360. [7] DELMAS C,FOUASSIER C,HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+ C,1980,99(1):81-85. [8] BERTHELOT R,CARLIER D,DELMAS C. Electrochemical investigation of the P2-NaxCoO2 phase diagram[J]. Nature Materials,2011,10(1):74-80. [9] MENDIBOURE A,DELMAS C,HAGENMULLER P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes[J]. Journal of Solid State Chemistry,1985,57(3):323-331. [10] MA X,CHEN H,CEDER G. Electrochemical properties of monoclinic NaMnO2[J]. Journal of the Electrochemical Society,2011,158(12):A1307-A1312. [11] KOMABA S,TAKEI C,NAKAYAMA T,et al. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2[J]. Electrochemistry Communications,2010,12(3):355-358. [12] VASSILARAS P,MA X,LI X,et al. Electrochemical properties of monoclinic NaNiO2[J]. Journal of the Electrochemical Society,2013,160(2):A207-A211. [13] OKADA S,TAKAHASHI Y,KIYABU T,et al. Layered transition metal oxides as cathodes for sodium secondary battery[C]//Meeting Abstracts. The Electrochemical Society,2006(4):201-201. [14] DELMAS C,BRACONNIER J J,FOUASSIER C,et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ionics,1981,3:165-169. [15] BRACONNIER J J,DELMAS C,HAGENMULLER P. Etude par desintercalation electrochimique des systemes NaxCoO2@NaxNiO2[J]. Materials Research Bulletin,1982,17(8):993-1000. [16] MAAZAZ A,DELMAS C,HAGENMULLER P. A study of the NaxTiO2 system by electrochemical deintercalation[J]. Journal of Inclusion Phenomena,1983,1(1):45-51. [17] MIYAZAKI S,KIKKAWA S,KOIZUMI M. Chemical and electrochemical deintercalations of the layered compounds LiMO2 (M=Cr, Co) and NaM′O2 (M′=Cr, Fe, Co, Ni)[J]. Synthetic Metals,1983,6:211-217. [18] TAKEDA Y,NAKAHARA K,NISHIJIMA M,et al. Sodium deintercalation from sodium iron oxide[J]. Materials Research Bulletin,1994,29(6):659-666. [19] 三洋电机株式会社. 钠离子二次电池:200710089146.8 [P]. Sanyo Electric [20] KIM D,KANG S H,SLATER M,et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes[J]. Advanced Energy Materials,2011,1(3):333-336. [21] KOMABA S,NAKAYAMA T,OGATA A,et al. Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2[J]. ECS Transactions,2009,16(42):43-55. [22] YABUUCHI N,KAJIYAMA M,IWATATE J,et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials,2012,11(6):512-517. [23] YOSHIDA H,YABUUCHI N,KOMABA S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries[J]. Electrochemistry Communications,2013,34:60-63. [24] LU Z,DAHN J R. In situ X-ray diffraction study of P2Na2/3[Ni1/3Mn2/3]O2[J]. Journal of the Electrochemical Society,2001,148(11):A1225-A1229. [25] LU Z,DAHN J R. Intercalation of water in P2, T2 and O2 structure Az[CoxNi1/3-xMn2/3]O2[J]. Chemistry of Materials,2001,13(4):1252-1257. [26] XU J,LEE D H,CLÉMENT R J,et al. Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1–y–z]O2 (0<x,y,z<1) intercalation cathode materials for high-energy Na-ion batteries[J]. Chemistry of Materials,2014,26(2):1260-1269. [27] ZHAO J,XU J,LEE D H,et al. Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries[J]. Journal of the Power Sources,2014,264:235-239. [28] XU Shuyin,WU Xiaoyan,LI Yunming,et al. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries[J]. Chinese Physics B,2014,23(11):107-110. [29] SATHIYA M,HEMALATHA K,RAMESHA K,et al. Synthesis,structure,and electrochemical properties of the layered sodium insertion cathode material:NaNi1/3Mn1/3Co1/3O2[J]. Chemistry of Materials,2012,24(10):1846-1853. [30] VASSILARAS P,TOUMAR A J,CEDER G. Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries[J]. Electrochemistry Communications,2014,38:79-81. [31] YABUUCHI N,YANO M,YOSHIDA H,et al. Synthesis and electrode performance of O3-type NaFeO2-NaNi1/2Mn1/2O2 solid solution for rechargeable sodium batteries[J]. Journal of the Electrochemical Society,2013,160(5):A3131-A3137. [32] KUZE S,KAGEURA J,MATSUMOTO S,et al. Development of a sodium ion secondary battery[J]. Sumitomo Kagaku,2013,2013:1-13. [33] QI X,WANG Y,JIANG L,et al. Sodium-deficient O3-Na0.9[Ni0.4MnxTi0.6-x]O2 layered-oxide cathode materials for sodium-ion batteries[J]. Particle & Particle Systems Characterization,2015,doi: 10.1002/ppsc.201500129. [34] LI Y,YANG Z,XU S,et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Advanced Science,2015,2(6):150031. [35] MU L,XU S,LI Y,et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials,2015,27(43):6928-6933. [36] GUO H,WANG Y,HAN W,et al. Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries[J]. Electrochimica Acta,2015,158:258-263. [37] DOEFF M M,PENG M Y,MA Y,et al. Orthorhombic NaxMnO2 as a cathode material for secondary sodium and lithium polymer batteries[J]. Journal of the Electrochemical Society,1994,141(11):L145-L147. [38] WHITACRE J F,TEVAR A,SHARMA S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device[J]. Electrochemistry Communications,2010,12(3):463-466. [39] LI Z,YOUNG D,XIANG K,et al. Towards high power high energy aqueous sodium-ion batteries:The NaTi2(PO4)3/Na0.44MnO2 system[J]. Advanced Energy Materials,2013,3(3):290-294. [40] WANG Y,LIU J,LEE B,et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries[J]. Nature Communications,2015,6,6401. [41] WANG Y,MU L,LIU J,et al. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries[J]. Advanced Energy Materials,2015,5(22):doi:10.1002/aenm.201501005. [42] XU S,WANG Y,BEN L,et al. Fe-based tunnel-type Na0、61[Mn0.27Fe0.34Ti0.39]O2 designed by a new strategy as a cathode material for sodium-ion batteries[J]. Advanced Energy Materials,2015,5(22):1501156. [43] GOODENOUGH J B,HONG H Y P,KAFALAS J A. Fast Na-ion transport in skeleton structures[J]. Materials Research Bulletin,1976,11(2):203-220. [44] UEBOU Y,KIYABU T,OKADA S,et al. Electrochemical sodium insertion into the 3D-framework of Na [45] JIAN Z,ZHAO L,PAN H,et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J]. Electrochemistry Communications,2012,14(1):86-89. [46] JIAN Z,HAN W,LU X,et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries[J]. Advanced Energy Materials,2013,3(2):156-160. [47] WILLIAM III A. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries[J]. Energy & Environmental Science,2015,8(2):540-545. [48] MOREAU P,GUYOMARD D,GAUBICHER J,et al. Structure and stability of sodium intercalated phases in olivine FePO4[J]. Chemistry of Materials,2010,22(14):4126-4128. [49] BARKER J,SAIDI M Y,SWOYER J L. A Sodium-ion cell based on the fluorophosphate compound NaVPO [50] BARKER J,GOVER R K B,BURNS P,et al. Hybrid-ion a lithium-ion cell based on a sodium insertion material[J]. Electrochemical and Solid-State Letters,2006,9(4):A190-A192. [51] QI Y,MU L,ZHAO J,et al. Superior Na-storage performance of low-temperature-synthesized Na3(VO1-xPO4) [52] ELLIS B L,MAKAHNOUK W R M,MAKIMURA Y,et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries[J]. Nature Materials,2007,6(10):749-753. [53] REYNAUD M,ATI M,BOULINEAUS,et al. Bimetallic sulfates A [54] BARPANDA P,OYAMA G,LING C D,et al. Kröhnkite-type Na2Fe(SO4)2·2H2O as a novel 3.25 V insertion compound for Na-ion batteries[J]. Chemistry of Materials,2014,26(3):1297-1299. [55] BARPANDA P,OYAMA G,NISHIMURA S,et al. A 3.8V earth-abundant sodium battery electrode[J]. Nature Communications,2014,5:doi: 10.1038/ncomms5358. [56] SINGH P,SHIVA K,CELIO H,et al. Eldfellite,NaFe(SO4)2:An intercalation cathode host for low-cost Na-ion batteries[J]. Energy & Environmental Science,2015,8(10):3000-3005. [57] BILLAUD J,CLÉMENT R J,ARMSTRONG A R,et al. β-NaMnO2:A high-performance cathode for sodium-ion batteries[J]. Journal of the American Chemical Society,2014,136(49):17243-17248. [58] YUAN D,LIANG X,WU L,et al. A honeycomb-layered Na3Ni2SbO6:A high-rate and cycle-stable cathode for sodium-ion batteries[J]. Advanced Materials,2014,26(36):6301-6306. [59] WESSELLS C D,PEDDADA S V,HUGGINS R A,et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters,2011,11(12):5421-5425. [60] WESSELLS C D,HUGGINS R A,CUI Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power[J]. Nature Communications,2011,2:550. [61] QIAN J,ZHOU M, [62] NOSE M,NAKAYAMA H,NOBUHARA K,et al. Na4Co3(PO4)2P2O7:A novel storage material for sodium-ion batteries[J]. Journal of Power Sources,2013,234:175-179. [63] BARPANDA P,LU J,YE T,et al. A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries[J]. RSC Advances,2013,3(12):3857-3860. [64] BARPANDA P,YE T,NISHIMURAS S,et al. Sodium iron pyrophosphate:A novel 3.0 V iron-based cathode for sodium-ion batteries[J]. Electrochemistry Communications,2012,24:16-119. [65] BARPANDA P,YE T,AVDEEV M,et al. A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries[J]. Journal of Materials Chemistry A,2013,1(13):4194-4197. [66] NEWMAN G H,KLEMANN L P. Ambient temperature cycling of an Na-TiS2 cell[J]. Journal of the Electrochemical Society,1980,127(10):2097-2099. [67] ASHER R C,WILSON S A. Lamellar compound of sodium with graphite[J]. Nature,1958,181(4606):409-410. [68] JACHE B,ADELHELM P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53(38):10169-10173. [69] DOEFF M M,MA Y,VISCO S J,et al. Electrochemical insertion of sodium into carbon[J]. Journal of the Electrochemical Society,1993,140(12):L169-L170. [70] ALCÁNTARA R,JIMÉNEZ-MATEOS J M,LAVELA P,et al. Carbon black:A promising electrode material for sodium-ion batteries[J]. Electrochemistry Communications,2001,3(11):639-642. [71] STEVENS D A,DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of the Electrochemical Society,2000,147(4):1271-1273. [72] KOMABA S,MURATA W,ISHIKAWA T,et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials,2011,21(20):3859-3867. [73] LI Y,HU Y S,CHEN L Q,et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3:71-77. [74] LI Y,HU Y S,LI H,et al. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries[J]. Journal of Materials Chemistry A,2016,4(1):96-104. [75] XU Y,ZHU Y,LIU Y,et al. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries[J]. Advanced Energy Materials,2013,3(1):128-133. [76] QIAN J,CHEN Y,WU L,et al. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries[J]. Chemical Communications,2012,48(56):7070-7072. [77] XIAO L, [78] QIAN J,WU X, [79] CHEVRIER V L,CEDER G. Challenges for Na-ion negative electrodes[J]. Journal of the Electrochemical Society,2011,158(9):A1011-A1014. [80] SENGUTTUVAN P,ROUSSE G,SEZNEC V,et al. Na2Ti3O7:Lowest voltage ever reported oxide insertion electrode for sodium ion batteries[J]. Chemistry of Materials,2011,23(18):4109-4111. [81] PAN H,LU X,YU X,et al. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries[J]. Advanced Energy Materials,2013,3(9):1186-1194. [82] ZHAO Liang,PAN Huilin,HU Yongsheng,et al. Spinel lithium titanate(Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery[J]. Chinese Physics B,2012,21(2):028201. [83] SUN Y,ZHAO L,PAN H,et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries[J]. Nature Communications,2013,4:1870. [84] WANG Y,YU X,XU S,et al. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J]. Nature Communications,2013,4:2365. [85] WANG Y,XIAO R,HU Y S,et al. P2-Na0.6[lsqb]Cr0.6Ti0.4[rsqb]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries[J]. Nature Communications,2015,6:6954. [86] WU D,LI X,XU B,et al. NaTiO2:A layered anode material for sodium-ion batteries[J]. Energy & Environmental Science,2015,8(1):195-202. [87] RUDOLA A,SARAVANAN K,DEVARAJ S,et al. Na2Ti6O13:A potential anode for grid-storage sodium-ion batteries[J]. Chemical Communications,2013,49(67):7451-7453. [88] DELMAS C,CHERKAOUI F,NADIRI A,et al. A NASICON-type phase as intercalation electrode:NaTi2(PO4)3[J]. Materials Research Bulletin,1987,22(5):631-639. [89] PATOUX S,ROUSSE G,LERICHE J B,et al. Structural and electrochemical studies of rhombohedral Na2TiM(PO4)3 and Li1.6Na0.4TiM(PO4)3 (M= Fe, Cr) phosphates[J]. Chemistry of materials,2003,15(10):2084-2093. [90] TRAD K,CARLIER D,CROGUENNEC L,et al. A layered iron(III) phosphate phase,Na3Fe3(PO4)4:Synthesis,structure,and electrochemical properties as positive electrode in sodium batteries[J]. The Journal of Physical Chemistry C,2010,114(21):10034-10044. [91] ZHAO L,ZHAO J,HU Y S,et al. Disodium terephthalate (Na [92] ABOUIMRANE A,WENG W,ELTAYEB H,et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells[J]. Energy & Environmental Science,2012,5(11):9632-9638. [93] WANG S,WANG L,ZHU Z,et al. All organic sodium-ion batteries with Na [94] WU X,MA J,MA Q,et al. A spray drying approach for the synthesis of a Na [95] WU X,JIN S,ZHANG Z,et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries[J]. Science Advances,2015,1(8):e1500330.
xCoO2 bronzes[J]. Solid State Ionics
xCoO2@NaxNiO2[J]. Materials Research Bulletin
xTiO2 system by electrochemical deintercalation[J]. Journal of Inclusion Phenomena
[19] 三洋电机株式会社. 钠离子二次电池:200710089146.8 [P]. 2007-09-26.
Sanyo Electric Co., LTD. Sodium-ion secondary battery:200710089146. 8 [P]. 2007-09-26.
x[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials
In situ X-ray diffraction study of P2Na2/3[Ni1/3Mn2/3]O2[J]. Journal of the Electrochemical Society
z[CoxNi1/3-xMn2/3]O2[J]. Chemistry of Materials
x[LiyNizMn1–y–z]O2 (0<x,y,z<1) intercalation cathode materials for high-energy Na-ion batteries[J]. Chemistry of Materials
[32] KUZE S,KAGEURA J,MATSUMOTO S,et al. Development of a sodium ion secondary battery[J]. Sumitomo Kagaku,2013,2013:1-13.xMnO2 as a cathode material for secondary sodium and lithium polymer batteries[J]. Journal of the Electrochemical Society
QI X
batteries[J]. Nature Communications
XU S
3M2(PO4)3 (M= Fe, V)[J].
4F[J]. Electrochemical and Solid-State Letters
xPO4)2F1+2x(0[53] REYNAUD M,ATI M,BOULINEAUS,et al. Bimetallic sulfates A2M(SO4)2. nH2O (A= Li,Na and M= Transition Metal):As new attractive electrode materials for Li-and Na-ion batteries[J]. ECS Transactions,2013,50(24):11-19.
·2H2O as a novel 3.25 V insertion compound for Na-ion batteries[J]. Chemistry of Materials
[63] BARPANDA P,LU J,YE T,et al. A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries[J]. RSC Advances,2013,3(12):3857-3860.
[64] BARPANDA P,YE T,NISHIMURAS S,et al. Sodium iron pyrophosphate:A novel 3.0 V iron-based cathode for sodium-ion batteries[J]. Electrochemistry Communications,2012,24:16-119.
batteries[J]. Electrochemistry Communications
[87] RUDOLA A,SARAVANAN K,DEVARAJ S,et al. Na2Ti6O13:A potential anode for grid-storage sodium-ion batteries[J]. Chemical Communications,2013,49(67):7451-7453.
2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery[J]. Advanced Energy Materials
4C8H2O6[J]. Angewandte Chemie International Edition
of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries[J]. Journal of Materials Chemistry A
|
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[3] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[4] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[5] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[6] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[7] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[8] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[9] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[10] | 申景潮, 胡健, 胡敬梁, 焦提操, 齐晓妹, 王云鹏, 于娣, 刘尚奇. 直流微电网储能装置双向DC-DC变换器参数自适应反步控制[J]. 储能科学与技术, 2022, 11(5): 1512-1522. |
[11] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
[12] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[13] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
[14] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[15] | 任重民, 王斌, 陈帅帅, 李华, 陈珍莲, 王德宇. 层状正极材料力学劣化及改善措施[J]. 储能科学与技术, 2022, 11(3): 948-956. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||