储能科学与技术 ›› 2014, Vol. 3 ›› Issue (2): 146-163.doi: 10.3969/j.issn.2095-4239.2014.02.010
罗飞, 褚赓, 黄杰, 孙洋, 李泓
收稿日期:
2014-01-24
出版日期:
2014-03-01
发布日期:
2014-03-01
通讯作者:
李泓,研究员,研究方向为固体离子学与锂电池材料,E-mail:hli@iphy.ac.cn.
作者简介:
罗飞(1987--),男,博士研究生,研究方向为锂离子电池硅负极材料,E-mail:feiluo1987@163.com;
基金资助:
LUO Fei, CHU Geng, HUANG Jie, SUN Yang, LI Hong
Received:
2014-01-24
Online:
2014-03-01
Published:
2014-03-01
摘要: 锂离子电池的成功商业化,起始于石油焦负极材料.负极作为锂离子电池必不可少的关键材料,目前主要集中在碳,钛酸锂以及硅基等合金类负极,采用传统的碳负极可以基本满足消费电子,动力电池,储能电池的要求,采用钛酸锂可以满足高功率密度,长循环寿命的要求,采用合金类负极材料有望进一步提高能量密度.本文小结了目前广泛使用和正在研究的锂离子电池负极材料的性能特点,讨论了下一代锂离子电池负极材料的研究和发展状况.
中图分类号:
罗飞, 褚赓, 黄杰, 孙洋, 李泓. 锂离子电池基础科学问题(Ⅷ)----负极材料[J]. 储能科学与技术, 2014, 3(2): 146-163.
LUO Fei, CHU Geng, HUANG Jie, SUN Yang, LI Hong. Fundamental scientific aspects of lithium batteries (Ⅷ)----Anode electrode materials[J]. Energy Storage Science and Technology, 2014, 3(2): 146-163.
[1] Armand M,Murphy D,Broadhead J, et al . Materials for Advanced Batteries[M]. New York:Plenum Press,1980:145. [2] Garreau M,Thevenin J,Fekir M. On the processes responsible for the degradation of the aluminum lithium electrode used as anode material in lithium aprotic electrolyte batteries[J]. Journal of Power Sources ,1983,9(3-4):235-238. [3] Yazami R,Touzain P. A reversible graphite-lithium negative electrode for electrochemical generators[J]. Journal of Power Sources ,1983,9(3):365-371. [4] Tarascon J. Mo 6 Se 6 :A new solid-state electrode for secondary lithium batteries[J]. Journal of the Electrochemical Society ,1985,132(9):2089-2093. [5] Scrosati B. Non aqueous lithium cells[J]. Electrochimica Acta ,1981,26(11):1559-1567. [6] Abraham K. Ambient temperature secondary lithium batteries using LiAl lithium insertion anodes[R]. California:California University Berkeley Lawrence Berkeley Lab,1987. [7] Hrold A. Recherches sur les composes d'insertion du graphite[J]. Bull. Soc. Chim. Fr. ,1955,187(7-8):999-1012. [8] Dey A,Sullivan B. The electrochemical decomposition of propylene carbonate on graphite[J]. Journal of the Electrochemical Society ,1970,117(2):222-224. [9] SONY. Non-aqueous electrolyte secondary cell:EP,EP0391281[P]. 1989-04-03. [10] Nagaura T,Tozawa K. Lithium ion rechargeable battery[J]. Prog Batteries Solar Cells ,1990,9:209. [11] Endo M,Kim C,Nishimura K, et al . Recent development of carbon materials for Li ion batteries[J]. Carbon ,2000,38(2):183-197. [12] Mabuchi A. A survey on the carbon anode materials for rechargeable lithium batteries[J]. Tanso ,1994,165 :298-306 [13] Yamaura J,Ozaki Y,Morita A, et al . High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material[J]. Journal of Power Sources ,1993,43(1):233-239. [14] Tarascon J M,Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature ,2001,414(6861):359-367. [15] Van S W,Scrosati B. Advances in Lithium-Ion Batteries[M]. Springer:Springer-Verlag,2002. [16] Kang B,Ceder G. Battery materials for ultrafast charging and discharging[J]. Nature ,2009,458(7235):190-193. [17] Armand M,Tarascon J M. Building better batteries[J]. Nature ,2008,451(7179):652-657. [18] Jansen A,Kahaian A,Kepler K, et al . Development of a high-power lithium-ion battery[J]. Journal of Power Sources ,1999,81:902-905. [19] Smith K,Wang C Y. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles[J]. Journal of Power Sources ,2006,160(1):662-673. [20] Zhang X,Ross P,Kostecki R, et al . Diagnostic characterization of high power lithium-ion batteries for use in hybrid electric vehicles[J]. Journal of the Electrochemical Society ,2001,148(5):A463-A470. [21] Zhou H H,Ci L C,Liu C Y. Progress in studies of the electrode materials for Li ion batteries[J]. Progress in Chemistry ,1998,10(1):85-92. [22] Hao R R,Fang X Y,Niu S C. Chemistry of the Elements (Ⅲ)[M]. Beijing:Science Press,1998,404-425. [23] Ohzuku T,Ueda A,Yamamoto N. Zero-strain insertion material of Li(Li 1/3 Ti 5/3 )O 4 for rechargeable lithium cells[J]. Journal of the Electrochemical Society ,1995,142(5):1431-1435. [24] Woo K C,Mertwoy H,Fischer J, et al . Experimental phase diagram of lithium-intercalated graphite[J]. Physical Review B ,1983,27(12):7831. [25] Dahn J. Phase diagram of Li x C 6 [J]. Physical Review B ,1991,44(17):9170. [26] Nalamova V,Guerard D,Lelaurain M, et al . X-ray investigation of highly saturated Li-graphite intercalation compound[J]. Carbon ,1995,33(2):177-181. [27] Feng Z Z,Song S Q. Preparation and application of mesophase pitch[J]. Carbon ,2013,2:42-45. [28] Honda H,Yamada Y. Meso-carbon microbeads[J]. J. Japan Petrol Inst. ,1973,16:392-397. [29] Xu B,Chen P. Intermediate development phase carbon microbeads (MCMB), properties and applications[J]. New Carbon Materials ,1996,11(3):4-8. [30] Niu Y J,Zhang H G,Zhou A M, et al . Non-Ferrous Progress:1996 2005[M]. Changsha:Central South University Press,2007. [31] Choi W C,Byun D,Lee J K. Electrochemical characteristics of silver-and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries[J]. Electrochimica Acta ,2004,50(2):523-529. [32] Lee H Y,Baek J K,Lee S M, et al . Effect of carbon coating on elevated temperature performance of graphite as lithium-ion battery anode material[J]. Journal of Power Sources ,2004,128(1):61-66. [33] Tanaka H,Osawa T,Moriyoshi Y, et al . Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma[J]. Thin Solid Films ,2004,457(1):209-216. [34] Guoping W,Bolan Z,Min Y, et al . A modified graphite anode with high initial efficiency and excellent cycle life expectation[J]. Solid State Ionics ,2005,176(9):905-909. [35] Lee J H,Lee S,Paik U, et al . Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance[J]. Journal of Power Sources ,2005,147(1):249-255. [36] Yamauchi Y,Hino T,Ohzeki K, et al . Gas desorption behavior of graphite anodes used for lithium ion secondary batteries[J]. Carbon ,2005,43(6):1334-1336. [37] Zhao X,Hayner C M,Kung M C, et al . In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries[J]. Advanced Energy Materials ,2011,1(6):1079-1084. [38] 王广驹. 世界石墨生产,消费及国际贸易[J]. 中国非金属矿工业导刊,2006,27(1):61-65. [39] Jonker G H. Magnetic compounds with perovskite structure Ⅳ conducting and non-conducting compounds[C]//Madrid:Proceedings 3rd Symposium on Reactivity of Solids,1956:707-722. [40] Murphy D,Cava R,Zahurak S, et al . Ternary Li x TiO 2 phases from insertion reactions[J]. Solid State Ionics ,1983,9:413-417. [41] Ferg E,Gummow R,De K A, et al . Spinel anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society ,1994,141(11):L147-L150. [42] Robertson A,Trevino L,Tukamoto H, et al . New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries[J]. Journal of Power Sources ,1999,81:352-357. [43] Peramunage D,Abraham K. Preparation of micron-sized Li 4 Ti 5 O 12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells[J]. Journal of the Electrochemical Society ,1998,145(8):2609-2615. [44] Julien C,Massot M,Zaghib K. Structural studies of Li 4/3 Me 5/3 O 4 (Me= Ti,Mn) electrode materials:Local structure and electrochemical aspects[J]. Journal of Power Sources ,2004,136(1):72-79. [45] Scharner S,Weppner W,Schmid B P. Evidence of two-phase formation upon lithium insertion into the Li 1.33 Ti 1.67 O 4 spinel[J]. Journal of the Electrochemical Society ,1999,146(3):857-861. [46] Zaghib K,Simoneau M,Armand M, et al . Electrochemical study of Li 4 Ti 5 O 12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of Power Sources ,1999,81:300-305. [47] Pecharroman C,Amarilla J. Thermal evolution of infrared vibrational properties of Li 4/3 Ti 5/3 O 4 measured by specular reflectance[J]. Physical Review B ,2000,62(18):12062. [48] Guerfi A,Charest P,Kinoshita K, et al . Nano electronically conductive titanium-spinel as lithium ion storage negative electrode[J]. Journal of Power Sources ,2004,126(1):163-168. [49] Gao L,Qiu W,Zhao H L. Lithiated titanium complex oxide as negative electrode[J]. Journal of University of Science and Technology Beijing ,2005,27(1):82-85. [50] Bach S,Pereira R J,Baffier N. Electrochemical properties of sol-gel Li 4/3 Ti 5/3 O 4 [J]. Journal of Power Sources ,1999,81:273-276. [51] Kavan L,Grtzel M. Facile synthesis of nanocrystalline Li 4 Ti 5 O 12 (spinel) exhibiting fast Li insertion[J]. Electrochemical and Solid-State Letters ,2002,5(2):A39-A42. [52] Hao Y,Lai Q Y,Liu D, et al . Synthesis by citric acid sol-gel method and electrochemical properties of Li 4 Ti 5 O 12 anode material for lithium-ion battery[J]. Materials Chemistry and Physics ,2005,94(2-3):382-387. [53] 王虹. 微波法制备钛酸锂的方法:中国,101333001A[P]. 2008-07-18. [54] 白莹. 一种用于锂二次电池负极材料尖晶石钛酸锂的制备方法:中国,1919736A[P]. 2006-08-17. [55] Li J,Tang Z,Zhang Z. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li 4 Ti 5 O 12 [J]. Electrochemistry Communications ,2005,7(9):894-899. [56] 杨立. 一种应用于锂离子电池的钛酸锂负极材料的制备方法中国:101409341A[P]. 2008-11-20. [57] Huang S,Wen Z,Zhu X, et al . Effects of dopant on the electrochemical performance of Li 4 Ti 5 O 12 as electrode material for lithium ion batteries[J]. Journal of Power Sources ,2007,165(1):408-412. [58] Tian B,Xiang H,Zhang L, et al . Niobium doped lithium titanate as a high rate anode material for Li-ion batteries[J]. Electrochimica Acta ,2010,55(19):5453-5458. [59] Huang Y,Qi Y,Jia D, et al . Synthesis and electrochemical properties of spinel Li 4 Ti 5 O1 2- x Cl x anode materials for lithium-ion batteries[J]. Journal of Solid State Electrochemistry ,2012,16(5):2011-2016. [60] Venkateswarlu M,Chen C,Do J, et al . Electrochemical properties of nano-sized Li 4 Ti 5 O 12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy[J]. Journal of Power Sources ,2005,146(1):204-208. [61] Cai R,Yu X,Liu X, et al . Li 4 Ti 5 O 12 /Sn composite anodes for lithium-ion batteries:Synthesis and electrochemical performance[J]. Journal of Power Sources ,2010,195(24):8244-8250. [62] Yuan T,Yu X,Cai R, et al . Synthesis of pristine and carbon-coated Li 4 Ti 5 O 12 and their low-temperature electrochemical performance[J]. Journal of Power Sources ,2010,195(15):4997-5004. [63] Hu X,Lin Z,Yang K, et al . Effects of carbon source and carbon content on electrochemical performances of Li 4 Ti 5 O 12 /C prepared by one-step solid-state reaction[J]. Electrochimica Acta ,2011,56(14):5046-5053. [64] Martha S K,Haik O,Borgel V, et al . Li 4 Ti 5 O 12 /LiMnPO 4 lithium-ion battery systems for load leveling application[J]. Journal of the Electrochemical Society ,2011,158(7):A790-A797. [65] Huang K L,Wang Z X,Liu S Q. Lithium-Ion Battery Technology and Key Principles[M]. Beijing:Chemical Industry Press,2008. [66] Xu K,Wang X Y,Xiao L X. Lithium Ion Battery[M]. Changsha:Central South University Press,2002. [67] Wang Q,Li H,Chen L, et al . Novel spherical microporous carbon as anode material for Li-ion batteries[J]. Solid State Ionics ,2002,152:43-50. [68] Li H,Wang Q,Shi L, et al . Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for a Li ion battery[J]. Chemistry of Materials ,2002,14(1):103-108. [69] Hu J,Li H,Huang X. Influence of micropore structure on Li-storage capacity in hard carbon spherules[J]. Solid State Ionics ,2005,176(11):1151-1159. [70] Fey G T K,Chen C L. High-capacity carbons for lithium-ion batteries prepared from rice husk[J]. Journal of Power Sources ,2001,97:47-51. [71] Yin G P,Zhou D R,Xia B J, et al . Preparation of phosphorus-doped carbon and its performance Lithium intercalation[J]. Battery Bimonthly ,2000,30(4):147-149. [72] Schnfelder H H,Kitoh K,Nemoto H. Nanostructure criteria for lithium intercalation in non-doped and phosphorus-doped hard carbons[J]. Journal of Power Sources ,1997,68(2):258-262. [73] Buiel E,Dahn J. Li-insertion in hard carbon anode materials for Li-ion batteries[J]. Electrochimica Acta ,1999,45(1):121-130. [74] Rosamaria F,Ulrich V S,Dahn J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical-cells[J]. Journal of the Electrochemical Society ,1990,137(7):2009-2013. [75] Stevens D,Dahn J. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society ,2001,148(8):A803-A811. [76] Bonino F,Brutti S,Piana M, et al . Structural and electrochemical studies of a hexaphenylbenzene pyrolysed soft carbon as anode material in lithium batteries[J]. Electrochimica Acta ,2006,51(17):3407-3412. [77] Guo M,Wang J C,Wu L B, et al . Study of carbon nanofibers as negative materials for Li-ion batteries[J]. Battery Bimonthly ,2004,34(5):384-385. [78] Sato Y,Kikuchi Y,Kawai T, et al . Characteristics of coke carbon modified with mesophase-pitch as a negative electrode for lithium ion batteries[J]. Journal of Power Sources ,1999,81:182-186. [79] Yoshio M,Tsumura T,Dimov N. Electrochemical behaviors of silicon based anode material[J]. Journal of Power Sources ,2005,146(1):10-14. [80] Lai S C. Solid lithium-silicon electrode[J]. Journal of the Electrochemical Society ,1976,123:1196. [81] Sharma R A,Seefurth R N. Thermodynamic properties of the lithium-silicon system[J]. Journal of the Electrochemical Society ,1976,123(12):1763-1768. [82] Seefurth R N,Sharma R A. Investigation of lithium utilization from a lithium-silicon electrode[J]. Journal of the Electrochemical Society ,1977,124(8):1207-1214. [83] Seefurth R N,Sharma R A. Dependence of lithium-silicon electrode potential and lithium utilization on reference electrode location[J]. Journal of the Electrochemical Society ,1980,127(5):1101-1104. [84] Wen C J,Huggins R A. Chemical diffusion in intermediate phases in the lithium-silicon system[J]. Journal of Solid State Chemistry ,1981,37(3):271-278. [85] Boukamp B A,Lesh G C,Huggins R A. All-solid lithium electrodes with mixed-conductor matrix[J]. Journal of the Electrochemical Society ,1981,128(4):725-729. [86] Weydanz W J,Wohlfahrt M M,Huggins R A. A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries[J]. Journal of Power Sources ,1999,81:237-242. [87] Gao B,Sinha S,Fleming L, et al . Alloy formation in nanostructured silicon[J]. Advanced Materials ,2001,13(11):816-819. [88] Li H,Huang X J,Chen L Q, et al . A high capacity nano-Si composite anode material for lithium rechargeable batteries[J]. Electrochem Solid State ,1999,2(11):547-549. [89] Li H,Huang X J,Chen L Q, et al . The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics ,2000,135(1-4):181-191. [90] Limthongkul P,Jang Y I,Dudney N J, et al . Electrochemically -driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage[J]. Acta Materialia ,2003,51(4):1103-1113. [91] Hatchard T D,Dahn J R. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon[J]. Journal of the Electrochemical Society ,2004,151(6):A838-A842. [92] Key B,Bhattacharyya R,Grey C P, et al . Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Journal of the American Chmical Society ,2009,131(26):9239-9249. [93] Key B,Morcrette M,Grey C P, et al . Pair distribution function analysis and solid State NMR studies of silicon electrodes for lithium ion batteries:Understanding the (De) lithiation mechanisms[J]. Journal of the American Chemical Society ,2011,133(3):503-512. [94] Beaulieu L Y,Hatchard T D,Bonakdarpour A, et al . Reaction of Li with alloy thin films studied by in situ AFM [J]. Journal of the Electrochemical Society ,2003,150(11):A1457-A1464. [95] Baggetto L,Danilov D,Notten P H L. Honeycomb-structured silicon:Remarkable morphological changes induced by electrochemical (De) lithiation[J]. Advanced Materials ,2011,23(13):1563-1566. [96] Lee S W,Mcdowell M T,Choi J W, et al . Anomalous shape changes of silicon nanopillars by electrochemical lithiation[J]. Nano Letters ,2011,11(7):3034-3039. [97] Lee S W,Mcdowell M T,Berla L A, et al . Fracture of crystalline silicon nanopillars during electrochemical lithium insertion[J]. Proceedings of the National Academy Sciences of the USA ,2012,109(11):4080-4085. [98] He Y,Yu X Q,Wang Y H, et al . Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic efficiency[J]. Advanced Materials ,2011,23(42):4938-4941. [99] He Y,Wang Y H,Yu X Q, et al . Si-Cu thin film electrode with kirkendall voids structure for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2012,159(12):A2076-A2081. [100] He Y,Yu X Q,Li G, et al . Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction[J]. Journal of Power Sources ,2012,216:131-138. [101] Wang Y,He Y,Xiao R, et al . Investigation of crack patterns and cyclic performance of Ti-Si nanocomposite thin film anodes for lithium ion batteries[J]. Journal of Power Sources ,2012,202:236-245. [102] Notten P H L,Roozeboom F,Niessen R A H, et al . 3-D integrated all-solid-state rechargeable batteries[J]. Advanced Materials ,2007,19(24):4564-4567. [103] Baggetto L,Oudenhoven J F M,Van D T, et al . On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries[J]. Journal of Power Sources ,2009,189(1):402-410. [104] Chan C K,Ruffo R,Hong S S, et al . Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes[J]. Journal of Power Sources ,2009,189(2):1132-1140. [105] Zheng J Y,Zheng H,Wang R, et al . An investigation on the sold electrolyte interphase of silicon anode for Li-ion batteries through force curve method[J]. Journal of Electrochemistry ,2013,19(6):530-536. [106] Zhang X W,Patil P K,Wang C S, et al . Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures[J]. Journal of Power Sources ,2004,125(2):206-213. [107] Chan C K,Ruffo R,Hong S S, et al . Structural and electrochemical study of the reaction of lithium with silicon nanowires [J]. Journal of Power Sources ,2009,189(1):34-39. [108] Cui L F,Ruffo R,Chan C K, et al . Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes[J]. Nano Letters ,2009,9(1):491-495. [109] Mcdowell M T,Lee S W,Ryu I, et al . Novel size and surface oxide effects in silicon nanowires as lithium battery anodes[J]. Nano Letters ,2011,11(9):4018-4025. [110] Ryu I,Choi J W,Cui Y, et al . Size-dependent fracture of Si nanowire battery anodes[J]. Journal of the Mechanics and Physics of Solid ,2011,59(9):1717-1730. [111] Xu W L,Vegunta S S S,Flake J C. Surface-modified silicon nanowire anodes for lithium-ion batteries[J]. Journal of Power Sources ,2011,196(20):8583-8539. [112] Yue L,Wang S Q,Zhao X Y, et al . Nano-silicon composites using poly (3,4-ethylenedioxythiophene):Poly (styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode[J]. Journal of Materials Chemistry ,2012,22(3):1094-1099. [113] Zang J L,Zhao Y P. Silicon nanowire reinforced by single-walled carbon nanotube and its applications to anti-pulverization electrode in lithium ion battery[J]. Composites Part B:Engineering ,2012,43(1):76-82. [114] Yoshio M,Wang H Y,Fukuda K, et al . Carbon-coated Si as a lithium-ion battery anode material[J]. Journal of the Electrochemical Society ,2002,149(12):A1598-A1603. [115] Qu J,Li H Q,henry J J, et al . Self-aligned Cu-Si core-shell nanowire array as a high-performance anode for Li-ion batteries[J]. Journal of Power Sources ,2012,198:312-317. [116] Jia H P,Gao P F,Yang J, et al . Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material[J]. Advanced Energy Materials ,2011,1(6):1036-1039. [117] Yao Y,Mcdowell M T,Ryu I, et al . Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life[J]. Nano Letters ,2011,11(7):2949-2954. [118] Fu K,Yildiz O,Bhanushali H, et al . Aligned carbon nanotube-silicon sheets:A novel nano-architecture for flexible lithium ion battery electrodes[J]. Advanced Materials ,2013,25(36):5109-5114. [119] Min J H,Bae Y S,Kim J Y, et al . Self-organized artificial SEI for improving the cycling ability of silicon-based battery anode materials[J]. B. Korean. Chem. Soc. ,2013,34(4):1296-1299. [120] Choi N S,Yew K H,Lww K Y, et al . Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode[J]. Journal of Power Sources ,2006,161(2):1254-1259. [121] Chakrapani V,Rusli F,Filler M A, et al . Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery[J]. J. Phys. Chem. C ,2011,115(44):22048-22053. [122] Etacheri V,Haik O,Goffer Y, et al . Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes[J]. Langmuir ,2011,28(1):965-976. [123] Buddie M C. High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries[J]. Chemical Communications ,2012,48(58):7268-7270. [124] Profatilova I A,Stock C,Schmitz A, et al . Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate[J]. Journal of Power Sources ,2013,222:140-149. [125] Leung K,Rempe S B,Foster M E, et al . Modeling electrochemical decomposition of fluoroethylene carbonate on silicon anode surfaces in lithium ion batteries[J]. Journal of the Electrochemical Society ,2014,161(3):A213-A221. [126] Kovalenko I,Zdyrko B,Magasinski A, et al . A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science ,2011,334(6052):75-79. [127] Ryou M H,Kim J,Lee I, et al . Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries[J]. Advanced Materials ,2012,25(11):1571-1576. [128] Li J,Lewis R,Dahn J. Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries[J]. Electrochemical and Solid-State Letters ,2007,10(2):A17-A20. [129] Bridel J S,Azais T,Morcrette M, et al . Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries[J]. Chem. Mater. ,2009,22(3):1229-1241. [130] Mazouzi D,Lestriez B,Roue L, et al . Silicon composite electrode with high capacity and long cycle life[J]. Electrochemical and Solid-State Letters ,2009,12(11):A215-A218. [131] Guo J C,Wang C S. A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery[J]. Chemical Communications ,2010,46(9):1428-1430. [132] Liu W R,Yang M H,Wu H C, et al . Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder[J]. Electrochemical and Solid-State Letters ,2005,8(2):A100-A103. [133] Park H K,Kong B S,Oh E S. Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries[J]. Electrochem. Commun. ,2011,13(10):1051-1053. [134] Magasinski A,Zdyrko B,Kovalenko I, et al . Toward efficient binders for Li-ion battery Si-based anodes:Polyacrylic acid[J]. ACS Applied Materials & Interfaces ,2010,2(11):3004-3010. [135] Yun J B,Soo K J,Tae L K. A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries[J]. RSC Advances ,2013,3(31):12625-12630. [136] Han Z J,Yabuuchi N,Hashimoto S, et al . Cross-linked poly (acrylic acid) with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries[J]. ECS Electrochemistry Letters ,2013,2(2):A17-A20. [137] Koo B,Kim H,Cho Y, et al . A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie International Edition ,2012,51(35):8762-8767. [138] Bae J,Cha S H,Park J. A new polymeric binder for silicon-carbon nanotube composites in lithium ion battery[J]. Macromol. Res. ,2013,21(7):826-831. [139] Yim C H,Abu L Y,Courtel F M. High capacity silicon/graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders[J]. Journal of Materials Chemistry A ,2013,1(28):8234-8243. [140] Erk C,Brezesinski T,Sommer H, et al . Toward silicon anodes for next-generation lithium ion batteries:A comparative performance study of various polymer binders and silicon nanopowders[J]. ACS Applied Materials & Interfaces ,2013,5(15):7299-7307. [141] Kim J S,Choi W,Cho K Y, et al . Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries[J]. Journal of Power Sources ,2013,144:521-526. [142] Li J,Christensen L,Obrovac M, et al . Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder[J]. Journal of the Electrochemical Society ,2008,155(3):A234-A238. [143] Kim Y L,Sun Y K,Lee S M. Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology[J]. Electrochimca Acta ,2008,53(13):4500-4504. [144] Guo J C,Sun A,Wang C S. A porous silicon-carbon anode with high overall capacity on carbon fiber current collector[J]. Electrochem. Commun. ,2010,12(7):981-984. [145] Choi J Y,Lee D J,Lee Y M, et al . Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes[J]. Adv. Funct. Mater. ,2013,23(17):2108-2114. [146] Hang T,Nara H,Yokoshima T, et al . Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries[J]. Journal of Power Sources ,2013,222:503-509. [147] Luais E,Sakai J,Desploban S, et al . Thin and flexible silicon anode based on integrated macroporous silicon film onto electrodeposited copper current collector[J]. Journal of Power Sources ,2013,242:166-170. [148] Tang X X,Liu W,Ye B Y, et al . Preparation of current collector with blind holes and enhanced cycle performance of silicon-based anode[J]. T. Nonferr. Metal Soc. ,2013,23(6):1723-1727. [149] Kim H,Han B,Choo J, et al . Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries[J]. Angewandte Chemie ,2008,120(52):10305-10308. [150] Bang B M,Kim H,Song H K, et al . Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching[J]. Energy & Environmental Science ,2011,4(12):5013-5019. [151] Kasavajjula U,Wang C,Appleby A J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. Journal of Power Sources ,2007,163(2):1003-1039. [152] Magasinski A,Dixon P,Hertzberg B, et al . High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Materials ,2010,9(4):353-358. [153] Liu G,Xun S,Vukmirovic N, et al . Polymers with tailored electronic structure for high capacity lithium battery electrodes[J]. Advanced Materials ,2011,23(40):4679-4683. [154] Chan C K,Peng H,Liu G, et al . High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology ,2007,3(1):31-35. [155] Idota Y,Kubota T,Matsufiti A, et al . Tin-based amorphous oxide:A high-capacity lithium-ion-storage material[J]. Science ,1997,276(5317):1395-1397. [156] Courtney I A,Dahn J. Key factors controlling the reversibility of the reaction of lithium with SnO 2 and Sn 2 BPO 6 glass[J]. Journal of the Electrochemical Society ,1997,144(9):2943-2948. [157] Li H,Huang X J,Chen L Q. Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries[J]. Electrochemical and Solid-State Letters ,1998,1(6):241-243. [158] Liu W,Huang X J,Wang Z, et al . Studies of stannic oxide as an anode material for lithium-ion batteries[J]. Journal of the Electrochemical Society ,1998,145(1):59-62. [159] Li H,Wang Z,Chen L, et al . Research on advanced materials for Li-ion batteries[J]. Advanced Materials ,2009,21(45):4593-4607. [160] David M. New materials extend Li-ion performance[J]. Power Electronics Technology ,2006,1(5):50. [161] Ogisu K. R&D activities & results for sony batteries [C]//San Francisco:Portable Power 2005 Conference,2005. [162] 索尼公司.索尼成功开发3.5 A·h高容量锂离子电池"Nexelion"[EB/OL].[2011-07-15]. http://www.sony.com.cn/news_ center/press_release/technology/1955_3787.htm. [163] Dahn J,Mar R,Abouzeid A. Combinatorial study of Sn 1- x Co x (0< x < 0.6) and (Sn 0. 55 Co 0. 45 ) 1- y C y (0< y < 0.5) alloy negative electrode materials for Li-ion batteries[J]. Journal of the Electrochemical Society ,2006,153(2):A361-A365. [164] Todd A,Mar R,Dahn J. Tin-transition metal-carbon systems for lithium-ion battery negative electrodes[J]. Journal of the Electrochemical Society ,2007,154(6):A597-A604. [165] Ferguson P,Martine M,Dunlap R, et al . Structural and electrochemical studies of (Sn x Co 1- x ) 60 C 40 alloys prepared by mechanical attriting[J]. Electrochimica Acta ,2009,54(19):4534-4539. [166] Ferguson P,Rajora M,Dunlap R, et al . (Sn 0.5 Co 0.5 ) 1- y C y alloy negative electrode materials prepared by mechanical attriting[J]. Journal of the Electrochemical Society ,2009,156(3):A204-A208. [167] Ferguson P,Todd A,Dahn J. Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries[J]. Electrochemistry Communications ,2008,10(1):25-31. [168] Hassoun J,Mulas G,Panero S, et al . Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy ball milling[J]. Electrochemistry Communications ,2007,9(8):2075-2081. [169] Lavela P,Nacimiento F,Ortiz G F, et al . Sn-Co-C composites obtained from resorcinol-formaldehyde gel as anodes in lithium-ion batteries[J]. Journal of Solid State Electrochemistry ,2010,14(1):139-148. [170] Liu B,Abouimrane A,Ren Y, et al . New anode material based on SiO-Sn x Co y C z for lithium batteries[J]. Chemistry of Materials ,2012,24(24):4653-4661. [171] Zhong X C,Jiang F Q,Xin P A, et al . Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries[J]. Journal of Power Sources ,2009,189(1):730-732. [172] Yang S,Li Q,Shen D. Influence of Fe on electrochemical performance of Sn x Co y /C anode materials[J]. Chinese Journal of Power Sources ,2011,35(2):148-152. [173] Shaobin Y,Ding S,Qiang L. Synthesis and electrochemical properties of Sn 0.35-0.5 x Co 0.35-0.5 x Zn x C 0.30 composite[J]. Acta Metallurgica Sinica ,2010,46(1):6-12. [174] Yang S B,Shen D,Wu X G, et al . Effects of Cu on structures and electrochemical properties of Sn-Co/C composite[J]. Chinese Journal of Nonferrous Metals ,2012,22(4):1163-1168. [175] Cui W,Wang F,Wang J, et al . Nanostructural CoSnC anode prepared by CoSnO 3 with improved cyclability for high-performance Li-ion batteries[J]. Electrochimica Acta ,2011,56(13):4812-4818. [176] Li M Y,Liu C L,Shi M R, et al . Nanostructure Sn-Co-C composite lithium ion battery electrode with unique stability and high electrochemical performance[J]. Electrochimica Acta ,2011,56(8):3023-3028. [177] Xin L,Jing Y X,Hai L Z, et al . Synthesis and properties of Sn 30 Co 30 C 40 ternary alloy anode material for lithium ion battery[J]. Acta Chimica Sinica ,2013,71(7):1011-1016. [178] Lee S I,Yoon S,Park C M, et al . Reaction mechanism and electrochemical characterization of a Sn-Co-C composite anode for Li-ion batteries[J]. Electrochimica Acta ,2008,54(2):364-369. [179] Fauteux D,Koksbang R. Rechargeable lithium battery anodes:Alternatives to metallic lithium[J]. Journal of Applied Electrochemistry ,1993,23(1):1-10. [180] Rahner D,Machill S,Schlorb H, et al . Intercalation materials for lithium rechargeable batteries[J]. Solid State Ionics ,1996,86:891-896. [181] Besenhard J,Hess M,Komenda P. Dimensionally stable Li-alloy electrodes for secondary batteries[J]. Solid State Ionics ,1990,40:525-529. [182] Maxfield M,Jow T,Gould S, et al . Composite electrodes containing conducting polymers and Li alloys[J]. Journal of the Electrochemical Society ,1988,135(2):299-305. [183] Winter M,Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallics and composites[J]. Electrochimica Acta ,1999,45(1):31-50. [184] Du C W,Chen Y B,Wu M S, et al . Advances in lithium-ion battery anode materials for non-carbon[C]//Tianjin:Proceedings of the 24th Chinese Chemistry and Physical Power Source Academic Conferences,2000. [185] Wu Y P,Wan C R. Study on materials for lithium-io |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[9] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[10] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[11] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[12] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
[13] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[14] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[15] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||