储能科学与技术 ›› 2015, Vol. 4 ›› Issue (2): 215-230.doi: 10.3969/j.issn.2095-4239.2015.02.014
黄杰, 凌仕刚, 王雪龙, 蒋礼威, 胡勇胜, 肖睿娟, 李泓
收稿日期:
2015-01-26
出版日期:
2015-04-19
发布日期:
2015-04-19
通讯作者:
肖睿娟,副研究员,研究方向为锂电池材料的理论计算模拟,E-mail:rjxiao @iphy.ac.cn。
作者简介:
黄杰(1987—),男,博士研究生,研究方向为锂空气电池与理论计算模拟,E-mail:huangj08@126.com
基金资助:
HUANG Jie, LING Shigang, WANG Xuelong, JIANG Liwei, HU Yongsheng, XIAO Ruijuan, LI Hong
Received:
2015-01-26
Online:
2015-04-19
Published:
2015-04-19
摘要: 基础理论的创新与计算机性能的大幅度提升为高精度与多尺度的计算模拟提供了可能,这些方法也在锂离子电池的研究中得到了广泛的应用。本文介绍了第一性原理、密度泛函理论、分子动力学、蒙特卡罗、相场模拟、分子力场、有限元等不同时间与空间尺度上的模拟方法的基本原理,并探讨了这些方法在锂离子电池基础研究中的应用,如计算电池电压、电极材料的电子结构、能带结构、迁移路径、缺陷生成能、离子在材料体相及不同微观结构中的输运、材料中温度场分布、应力场分布等。
中图分类号:
黄杰, 凌仕刚, 王雪龙, 蒋礼威, 胡勇胜, 肖睿娟, 李泓. 锂离子电池基础科学问题(ⅩⅣ)——计算方法[J]. 储能科学与技术, 2015, 4(2): 215-230.
HUANG Jie, LING Shigang, WANG Xuelong, JIANG Liwei, HU Yongsheng, XIAO Ruijuan, LI Hong. Fundamental scientific aspects of lithium ion batteries(ⅩⅣ)—Calculation methods[J]. Energy Storage Science and Technology, 2015, 4(2): 215-230.
[1] Jian Zengyun(坚增运),Liu Cuixia(刘翠霞),Lv Zhigang(吕志刚). Computational Materials Science(计算材料学)[M]. Beijing:Chemical Industry Press,2012. [2] Hafner J,Wolverton C,Ceder G. Toward computational materials design:The impact of density functional theory on materials research[J]. Mater. Res. Soc. Bull. ,2006,31(9):659-667. [3] Wang C Y,Zhang X. Multiscale modeling and related hybrid approaches[J]. Current Opinion in Solid State & Materials Science ,2006,10(1):2-14. [4] Meng Y S,Dompablo M E. Frist principles computational materials design for energy storage materials in lithium ion batteries[J]. Energ. Environ. Sci. ,2009,2(6):589-609. [5] Car R,Parrinello M. Unified approach for molecular dynamics and density-functional theory[J]. Phys. Rev. Lett. ,1985,55(22):2471-2474. [6] Kohn W. Nobel lecture:Electronic structure of matter—Wave functions and density functionals[J]. Rev. Mod. Phys. ,1999,71(5):1253-1266. [7] Shi Siqi(施思齐). 锂离子电池正极材料的第一性原理研究[D]. Beijing:Institute of Physics Chinese Academy of Sciences,2004. [8] Born M,Huang K. Dynamical Theory of Crystal Lattices[M]. Oxford:Oxford Universities Press,1954. [9] Thomas L H. The calculation of atomic fields[J]. Proc. Cambridge Phil. Soc. ,1927,23(5):542-548. [10] Fermi E. Un metodo statistico per la Determinazione di alcune prioprietà dell'Atomo[J]. Rend. Accad. Naz. Lincei ,1927,6:602-607. [11] Hohenberg P,Kohn W. Inhomogeneous electron gas[J]. Phys. Rev. ,1964,136(3B):864-871. [12] Kohn W,Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev. ,1965,140(4A):1133-1138. [13] Slater J C. A simplification of the Hartree-Fock method[J]. Phys. Rev. ,1951,81(3):385-390. [14] Ceperley D M,Alder B J. Ground-state of the electron-gas by a stochastic method[J]. Phys. Rev. Lett. ,1980,45(7):566-569. [15] Perdew J P,Zunger A. Self-interaction corrction to density-functional appoximations for many-electron systems[J]. Phys. Rev. B ,1981,23(10):5048-5079. [16] Jones R O,Gunnarsson O. The density functional formalism, its application and prospects[J]. Rev. Mod. Phys. ,1989,61(3):689-746. [17] Langreth D C,Perdew J P. Theory of nonuniform electronic systems.1.analysis of the gradient approximation and a generalization that works[J]. Phys. Rev. B ,1980,21(12):5469-5493. [18] Becke A D. Density-functional exchange-energy approximation with correct asymptotic-behavior[J]. Phys. Rev. A ,1988,38(6):3098-3100. [19] Perdew J P,Chevary J A,Vosko S H, et al . Atoms,molecules,solids,and surfaces—Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B ,1992,46(11):6671-6687. [20] Perdew J P,Wang Y. Accurate and simple analytic representation of the electron-gas correlation-energy[J]. Phys. Rev. B ,1992,45(23):13244-13249. [21] Perdew J P,Burke K,Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett. ,1996,77(18):3865-3868. [22] Tao J,Perdew J P. Climbing the density functional ladder:Nonempirical meta-generalized gradient approximation designed for molecules and solids[J]. Phys. Rev. Lett. ,2003,91(14):146401. [23] Andersson Y,Langreth D C,Lundqvist B I. Van der Waals interactions in density-functional theory[J]. Phys. Rev. Lett. ,1996,76(1):102-105. [24] Kohn W,Meir Y,Makarov D E. Van der Waals energies in density functional theory[J]. Phys. Rev. Lett. ,1998,80(19):4153-4156. [25] Becke A D. A new mixing of Hartree-Fock and local density-functional theories[J]. J. Chem. Phys. ,1993,98(2):1372-1377. [26] Sun Yang(孙洋). 锂离子电池电极材料中离子传输与相变反应机理的第一性原理研究[D]. Beijing:Institute of Physics Chinese Academy of Sciences,2014. [27] Zhou F,Cococcioni M,Marianetti C A, et al . First-principles prediction of redox potentials in transition-metal compounds with LDA + U[J]. Phys. Rev. B ,2004,70(23):235121. [28] Chevrier V L,Ong S P,Armiento R, et al . Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds[J]. Phys. Rev. B ,2010,82(7):75122. [29] Wang L,Maxisch T,Ceder G. A first-principles approach to studying the thermal stability of oxide cathode materials[J]. Chem. Mater. ,2007,19(3):543-552 [30] Gao Y R,Ma J,Wang X F, et al . Improved electron/Li-ion transport and oxygen stability of Mo-doped Li 2 MnO 3 [J]. Journal of Materials Chemistry A ,2014,2(13):4811-4818. [31] Xiao R J,Li H,Chen L Q. Density functional investigation on Li 2 MnO 3 [J]. Chemistry of Materials ,2012,24(21):4242-4251. [32] Goodenough J B,Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials ,2010,22:587-603. [33] Lepley N D,Holzwarth N A W,Du Y A. Structure, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles[J]. Phys. Rev. B ,2013,88:104103. [34] Shi S Q,Liu L J,Ouyang C Y, et al . Enhancement of electronic conductivity of LiFePO 4 by Cr doping and its identification by first-principles calculations[J]. Phys. Rev. B ,2003,68(19):195108. [35] Quartarone E,Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries:Recent advances and perspectives[J]. Chem. Soc. Rev. ,2011,40(5):2525-2540. [36] Ouyang C Y,Shi S Q,Wang Z X, et al . The effect of Cr doping on Li ion diffusion in LiFePO 4 from first principles investigations and Monte Carlo simulations[J]. Journal of Physics : Condensed Matter .,2004,16(13):2265-2272. [37] Ouyang Chuying(欧阳楚英). 锂离子电池正极材料离子动力学性能研究[D]. Beijing:Institute of Physics Chinese Academy of Sciences,2005. [38] Ouyang C Y,Shi S Q,Wang Z X, et al . First-principles study of Li ion diffusion in LiFePO 4 [J]. Phys. Rev. B ,2004,69(10):104303. [39] Hoang K,Johannes M D. First-principles studies of the effects of impurities on the ionic and electronic conduction in LiFePO 4 [J]. J . Power Sources ,2012,206:274-281. [40] Ohzuku T,Iwakoshi Y,Sawai K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell[J]. J. Electrochem. Soc .,1993,140(9):2490-2498. [41] Gu L,Zhu C B,Li H,Yu Y,Li C L,Tsukimoto S,Maier J,Ikuhara Y. Direct observation of lithium staging in partially delithiated LiFePO 4 at atomic resolution[J]. J. Am. Chem. Soc. ,2011,133(13):4661-4663. [42] Sun Y,Lu X,Xiao R J, et al . Kinetically controlled lithium-staging in delithiated LiFePO 4 driven by the Fe center mediated interlayer Li-Li interactions[J]. Chem. Mater. ,2012,24(24):4693-4703. [43] Li H,Huang X J,Chen L Q,Wu Z G,Liang Y. A high capacity nano-Si composite anode material for lithium rechargeable batteries[J]. Electrochem. Solid-State Lett. ,1999,2(11):547-579. [44] Stadler R,Wolf W,Podloucky R, et al . Ab initio calculations of the cohesive, elastic, and dynamical properties of CoSi 2 by pseudopotential and all-electron techniques[J]. Phys. Rev. B ,1996,54(3):1729-1734. [45] Shenoy V B,Johari P,Qi Y. Elastic softening of amorphous and crystalline Li-Si Phases with increasing Li concentration:A first-principles study[J]. J. Power Sources ,2010,195(19):6825-6830. [46] Frenkel D,Smit B. Understanding Molecular Simulation[M]. Newyork:Academic Press,2001. [47] Richard M M. Electronic Structure:Basic Theory and Practical Methods[M]. Cambridge:Cambridge University Press,2004. [48] Van der Ven A,Ceder G,Asta M, et al . First-principles theory of ionic diffusion with nondilute carriers[J]. Phys. Rev. B ,2001,64(18):184307. [49] Chen J,Li X Z,Zhang Q F, et al . Quantum simulation of low-temperature metallic liquid hydrogen[J]. Nature Commun. ,2013(4):1-5. [50] Yang J J,Tse J S. Li ion diffusion mechanisms in LiFePO 4 :An ab initio molecular dynamics study[J]. J. Phys. Chem. A ,2011,115(45):13045-13049. [51] Metropolis N,Ulam S M. The Monte Carlo method[J]. J. Am. Statis. Asoc. ,1949,44(247):335-341. [52] Niederreiter H. Quasi-Monte Carlo methods and pseudo-random numbers[J]. Bull. Amer. Math. Soc. ,1978,84(6):957-1041. [53] Hoffmann K H,Meyer A. Parallel Algorithms and Cluster Computing:Implementations, Algorithms and Applations[M]. Berlin:Springer,2006. [54] Binder K. Applications of Monte Carlo methods to statistical physics[J]. Rep. Prog. Phys. ,1997,60(5):487-559. [55] Zheng J Y,Zheng H,Wang R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Phys. Chem. Chem. Phys. ,2014,16(26):13229-13238. [56] Methekar R N,Northrop P W C,Chen K, et al . Kinetic Monte Carlo simulation of surface heterogeneity in graphite anodes for lithium-ion batteries:Passive layer formation[J]. J. Electrochem. Soc. ,2011,158(4):A363. [57] Ouyang C Y,Shi S Q,Wang Z X, et al . Temperature-dependent dynamic properties of Li x Mn 2 O 4 in Monte Carlo simulations[J]. Chin. Phys. Lett. ,2005,22(2):489-492. [58] Ouyang C Y,Shi S Q,Wang Z X, et al . The effect of Cr doping on Li ion diffusion in LiFePO 4 from first principles investigations and Monte Carlo simulations[J]. J. Phys. : Condensed Matter. ,2004,16(13):2265-2272. [59] Chen L Q. Phase-field models for microstructure evolution[J]. Ann. Rev. Mater. Res. ,2002,32(1):113-140. [60] Cornell W D,Cieplak P,Bayly C I, et al . A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. J. Am. Chem. Soc. ,1995,117(19):5178-5197. [61] Kobayashi R. Modeling and numerical simulations of dendritic crystal growth[J]. Phys. D : Nonlinear Phenom. ,1993,63(3-4):410-423. [62] Jia Weijian(贾伟建). 凝固微观组织相场法模拟[D]. Lanzhou:Lanzhou University of Technology,2005. [63] Long Wenyuan(龙文元). Phase-field simulations of dendritic growth in aluminum alloy solidification[D]. Wuhan:Huazhong University Science and Technology,2004. [64] Zuo P,Zhao Y P. A phase field model coupling lithium diffusion and stress evolution with crack propagation and application in lithium ion batteries[J]. Phys. Chem. Chem. Phys. ,2014,17(1):287-297. [65] Yamakawa S,Yamasaki H,Koyama T,Asahi R. Numerical study of Li diffusion in polycrystalline LiCoO 2 [J]. J. Power Sources ,2013,223:199-205. [66] Beaulieu L Y,Hatchard T D,Bonakdarpour A, et al . Reaction of Li with alloy thin films studied by in-situ AFM[J]. J. Electrochem. Soc. ,2003,150(11):A1457. [67] Ma Y,Garofalini S H. Atomistic insights into the conversion reaction in iron fluoride:A dynamically adaptive force field approach[J]. J. Am. Chem. Soc. ,2012,134(19):8205-8211. [68] Wang Xucheng(王勖成). 有限单元法[M]. Beijing:Tsinghua University Press,2008. [69] Zhang Wensheng(张文生). 科学计算中的偏微分方程有限差分方法[M]. Beijing:Higher Education Press,2006. [70] Guo G F,Bo L,Bo C, et al . Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. J. Power Sources ,2010,195(8):2393-2398. [71] Bower A F,Guduru P R. A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials[J]. Modell. Simu. Mater. Sci. Eng. ,2012,20(4):45004. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[3] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[4] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[9] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[10] | 于春辉, 何姿颖, 张晨曦, 林贤清, 肖哲熙, 魏飞. 硅基负极与电解液化学反应的分析与抑制策略[J]. 储能科学与技术, 2022, 11(6): 1749-1759. |
[11] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
[12] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[13] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[14] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[15] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||