储能科学与技术 ›› 2016, Vol. 5 ›› Issue (6): 869-881.doi: 10.12028/j.issn.2095-4239.2016.0085
武怿达,金 周,张 华,赵俊年,詹元杰,陈宇阳,陈 彬,王 昊,俞海龙,贲留斌,刘燕燕,黄学杰
收稿日期:
2016-10-17
修回日期:
2016-10-20
出版日期:
2016-11-01
发布日期:
2016-11-01
通讯作者:
黄学杰,研究员,研究方向为锂离子电池及其关键材料,E-mail:xjhuang@iphy. ac.cn。
作者简介:
武怿达(1992—),男,博士研究生,研究方向为锂离子正极材料,E-mail:wuyida14@mails.ucas.ac.cn;
WU Yida, JIN Zhou, ZHANG Hua, ZHAO Junnian, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin,WANG Hao, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2016-10-17
Revised:
2016-10-20
Online:
2016-11-01
Published:
2016-11-01
摘要: 该文是一篇近两个月的锂电池文献评述,以“lithium”和“batter*”为关键词检索了Web of Science从2016年8月1日至2016年9月30日上线的锂电池研究论文,共有1579篇,选择其中100篇加以评论。正极材料主要研究了三元材料、富锂相材料和尖晶石材料的结构和表面结构随电化学脱嵌锂变化以及掺杂和表面包覆及界面层改进对其循环寿命的影响。硅基复合负极材料研究侧重于嵌脱锂机理以及SEI界面层,电解液添加剂、固态电解质电池、锂硫电池、锂空气电池的论文也有多篇。原位分析偏重于界面SEI和电极反应机理,理论模拟工作涵盖储锂机理、动力学、界面SEI形成机理分析和固体电解质等。除了以材料为主的研究之外,还有多篇针对电池、电极结构进行分析的研究论文。
武怿达,金 周,张 华,赵俊年,詹元杰,陈宇阳,陈 彬,王 昊,俞海龙,贲留斌,刘燕燕,黄学杰. 锂电池百篇论文点评(2016.8.1—2016.9.30)[J]. 储能科学与技术, 2016, 5(6): 869-881.
WU Yida, JIN Zhou, ZHANG Hua, ZHAO Junnian, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin,WANG Hao, YU Hailong, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Aug. 1,2016 to Sep. 30,2016)[J]. Energy Storage Science and Technology, 2016, 5(6): 869-881.
[1] CHEN C J,PANG W K,MORI T,et al. The origin of capacity fade in the Li2MnO3 center dot LiMO2 (M=Li, Ni, Co, Mn) microsphere positive electrode:An operando neutron diffraction and transmission X-ray microscopy study[J]. Journal of the American Chemical Society,2016,138(28):8824-8833. [2] JACKSON D H,LASKAR M R,FANG S Y,et al. Optimizing AlF3 atomic layer deposition using trimethylaluminum and TaF5:Application to high voltage Li-ion battery cathodes[J]. Journal of Vacuum Science & Technology A,2016,34(3):doi: 10.1116/1.4943385. [3] QIU B,ZHANG M H,WU L J,et al. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries[J]. Nature Communications,2016,7:doi: 10.1038/ncomms12108. [4] YAN P F,ZHENG J M,ZHENG J X,et al. Ni and Co segregations on selective surface facets and rational design of layered lithium transition-metal oxide cathodes[J]. Advanced Energy Materials,2016,6(9):doi: 10.1002/aenm.201670054. [5] ZHAO Y,LIU J T,WANG S B,et al. Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides:Implications for enhanced electrochemical performance[J]. Advanced Functional Materials,2016,26(26):4760-4767. [6] DUAN J G,HU G R, [7] LI B,WANG J, [8] ZHOU J G,WANG J,CUTLER J,et al. Imaging the surface morphology, chemistry and conductivity of LiNi1/3Fe1/3Mn4/3O4 crystalline facets using scanning transmission X-ray microscopy[J]. Physical Chemistry Chemical Physics,2016,18(33):22789-22793. [9] GABRIELLI G,AXMANN P,DIEMANT T,et al. Combining optimized particle morphology with a niobium-based coating for long cycling-life, high-voltage lithium-ion batteries[J]. ChemSusChem,2016,9(13):1670-1679. [10] LIU G Q,DU Y L,LIU W B,et al. Study on the action mechanism of doping transitional elements in spinel LiNi0.5Mn1.5O4[J]. Electrochimica Acta,2016,209:308-314. [11] MAO J,MA M Z,LIU P P,et al. The effect of cobalt doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material[J]. Solid State Ionics,2016,292:70-74. [12] PANG W K,LU C Z,LIU C E,et al. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode[J]. Physical Chemistry Chemical Physics,2016,18(26):17183-17189. [13] BOULET-ROBLIN L,BOREL P,SHEPTYAKOV D,et al. Operando neutron powder diffraction using cylindrical cell design:The case of LiNi0.5Mn1.5O4 vs graphite[J]. Journal of Physical Chemistry C,2016,120(31):17268-17273. [14] MANCINI M,AXMANN P,GABRIELLI G,et al. A high-voltage and high-capacity Li1+xNi0.5Mn1.5O4 cathode material:From synthesis to full lithium-ion cells[J]. ChemSusChem,2016,9(14):1843-1849. [15] ABE S,IWASAKI S,SHIMONISHI Y,et al. Effect of Ni and Ti substitutions on Li1.05Mn2O4-delta electrical conductivities at high temperature[J]. Solid State Communications,2016,244:64-67. [16] ZETTSU N,KIDA S,UCHIDA S,et al. Sub-2 nm thick fluoroalkylsilane self-assembled monolayer-coated high voltage spinel crystals as promising cathode materials for lithium ion batteries[J]. Scientific Reports,2016,6:doi: 10.1038/srep31999. [17] SAMARASINGHA P B,SOTTMANN J,MARGADONNA S,et al. In situ synchrotron study of ordered and disordered LiMn1.5Ni0.5O4 as lithium ion battery positive electrode[J]. Acta Materialia,2016,116:290-297. [18] CHEN J,ZHAO N,LI G D,et al. Superior performance of LiFePO4/C with porous structure synthesized by an in situ polymerization restriction method for lithium ion batteries[J]. Materials Chemistry and Physics,2016,180:244-249. [19] KRUMEICH F,WASER O,PRATSINIS S E. Thermal annealing dynamics of carbon-coated LiFePO4 nanoparticles studied by in-situ analysis[J]. Journal of Solid State Chemistry,2016,242:96-102. [20] PARK K Y,PARK I,KIM H,et al. Lithium-excess olivine electrode for lithium rechargeable batteries[J]. Energy & Environmental Science,2016,9(9):2902-2915. [21] SAULNIER M,AUCLAIR A,LIANG G,et al. Manganese dissolution in lithium-ion positive electrode materials[J]. Solid State Ionics,2016,294:1-5. [22] CHEN R Y,MAAWAD E,KNAPP M,et al. Lithiation-driven structural transition of VO [23] CHEN R Y,REN S H,MU X K,et al. High-performance low-temperature Li+ intercalation in disordered rock-salt Li-Cr-V oxyfluorides[J]. ChemElectroChem,2016,3(6):892-895. [24] AOKI N,OMACHI A,UOSAKI K,et al. Structural study of electrochemically lithiated Si(111) by using soft X-ray emission spectroscopy combined with scanning electron microscopy and through X-ray diffraction measurements[J]. ChemElectroChem,2016,3(6):959-965. [25] KIM S H,YOOK S H,KANNAN A G,et al. Enhancement of the electrochemical performance of silicon anodes through alloying with inert metals and encapsulation by graphene nanosheets[J]. Electrochimica Acta,2016,209:278-284. [26] FAN H Y,LI X Q,HE H Q,et al. Electrochemical properties and thermal stability of silicon monoxide anode for rechargeable lithium-ion batteries[J]. Electrochemistry,2016,84(8):574-577. [27] SEIDLHOFER B K,JERLIU B,TRAPP M,et al. Lithiation of crystalline silicon as analyzed by operando neutron reflectivity[J]. ACS Nano,2016,10(8):7458-7466. [28] CHO I,GONG S,SONG D,et al. Mussel-inspired polydopamine-treated copper foil as a current collector for high-performance silicon anodes[J]. Scientific Reports,2016,6:doi: 10.1038/srep30945. [29] YOO S,KIM J,KANG B. Characterizing local structure of SiOx using confocal m-Raman spectroscopy and its effects on electrochemical property[J]. Electrochimica Acta,2016,212:68-75. [30] BREITUNG B,BAUMANN P,SOMMER H,et al. In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries[J]. Nanoscale,2016,8(29):14048-14056. [31] YOON I,ABRAHAM D P,LUCHT B L,et al. In situ measurement of solid electrolyte interphase evolution on silicon anodes using atomic force microscopy[J]. Advanced Energy Materials,2016,6(12):doi: 10.1002/aenm.201600099. [32] JESCHULL F,LINDGREN F,LACEY M J,et al. Influence of inactive electrode components on degradation phenomena in nano-Si electrodes for Li-ion batteries[J]. Journal of Power Sources,2016,325:513-524. [33] JIANG Y Z,WANG H K,LI B B,et al. Interfacial engineering of Si/multi-walled carbon nanotube nanocomposites towards enhanced lithium storage performance[J]. Carbon,2016,107:600-606. [34] DAS S,DUTTA D,ARAUJO R B,et al. Probing the pseudo-1-D ion diffusion in lithium titanium niobate anode for Li-ion battery[J]. Physical Chemistry Chemical Physics,2016,18(32):22323-22330. [35] LIU J Y,CHEN X,KIM J,et al. High volumetric capacity three-dimensionally sphere-caged secondary battery anodes[J]. Nano Letters,2016,16(7):4501-4507. [36] FAROOQ U,DOH C H,PERVEZ S A,et al. Rate-capability response of graphite anode materials in advanced energy storage systems:A structural comparison[J]. Carbon Letters,2016,17(1):39-44. [37] ZHOU X S,YU L,LOU X W. Formation of uniform N-doped carbon-coated SnO2 submicroboxes with enhanced lithium storage properties[J]. Advanced Energy Materials,2016,6(14):doi: 10.1002/aenm.201600451. [38] PARK S K,KIM H K,ROH K C,et al. The confinement of SnO2 nanocrystals into 3D RGO architectures for improved rate and cyclic performance of LIB anode[J]. Crystengcomm,2016,18(32):6049-6054. [39] LEE H,SONG J,KIM Y J,et al. Structural modulation of lithium metal-electrolyte interface with three-dimensional metallic interlayer for high-performance lithium metal batteries[J]. Scientific Reports,2016,6:doi: 10.1038/srep30830. [40] YUN Q B,HE Y B,LV W,et al. Chemical dealloying derived 3D porous current collector for Li metal anodes[J]. Advanced Materials,2016,28(32):doi: 10.1002/adma.201601409. [41] ZHANG D,ZHOU Y,LIU C H,et al. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery[J]. Nanoscale,2016,8(21):11161-11167. [42] LEE G H,LEE J W,CHOI J I,et al. Ultrafast discharge/charge rate and robust cycle life for high-performance energy storage using ultrafine nanocrystals on the binder-free porous graphene foam[J]. Advanced Functional Materials,2016,26(28):5139-5148. [43] PARK J,JEONG J,LEE Y,et al. Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries[J]. Advanced Materials Interfaces,2016,3(11):doi: 10.1002/admi.201600140. [44] BALABAJEW M,REINHARDT H,BOCK N,et al. In-situ raman study of the intercalation of bis(trifluoromethylsulfonyl) imid ions into graphite inside a dual-ion cell[J]. Electrochimica Acta,2016,211:679-688. [45] RODRIGUES M T,KALAGA K,GULLAPALLI H,et al. Hexagonal boron nitride-based electrolyte composite for Li-ion battery operation from room temperature to [46] LIAO X L,ZHENG X W,CHEN J W,et al. Tris(trimethylsilyl) phosphate as electrolyte additive for self-discharge suppression of layered nickel cobalt manganese oxide[J]. Electrochimica Acta,2016,212:352-359. [47] JUNG R,METZGER M,HAERING D,et al. Consumption of fluoroethylene carbonate (FEC) on Si-C composite electrodes for Li-ion batteries[J]. Journal of the Electrochemical Society,2016,163(8):A1705-A1716. [48] TAKEUCHI S,KOKUMAI R,NAGATA S,et al. Effect of the addition of bivalent ions on electrochemical lithium-ion intercalation at graphite electrodes[J]. Journal of the Electrochemical Society,2016,163(8):A1693-A1696. [49] ELLIS L D,XIA J,LOULI A J,et al. Effect of substituting LiBF4 for LiPF [50] JURNG S,PARK S,YOON T,et al. Low-temperature performance improvement of graphite electrode by allyl sulfide additive and its film-forming mechanism[J]. Journal of the Electrochemical Society,2016,163(8):A1798-A1804. [51] KIM C K,SHIN D S,KIM K E,et al. Fluorinated hyperbranched cyclotriphosphazene simultaneously enhances the safety and electrochemical performance of high-voltage lithium-ion batteries[J]. ChemElectroChem,2016,3(6):913-921. [52] BROX S,ROSER S,HUSCH T,et al. Alternative single-solvent electrolytes based on cyanoesters for safer lithium-ion batteries[J]. ChemSusChem,2016,9(13):1704-1711. [53] PARK K,YU B C,GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials,2016,6(10):doi: 10.1002/aenm.201502534. [54] DOI T,MASUHARA R,HASHINOKUCHI M,et al. Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0.5Mn1.5O4 positive electrode in lithium-ion batteries[J]. Electrochimica Acta,2016,209:219-224. [55] HORIUCHI S,YOSHIZAWA-FUJITA M,TAKEOKA Y,et al. Physicochemical and electrochemical properties of N-methyl-N-methoxymethyl pyrrolidinium bis(fluorosulfonyl) amide and its lithium salt composites[J]. Journal of Power Sources,2016,325:637-640. [56] LIU B,YAN P F,XU W,et al. Electrochemically formed ultrafine metal oxide nanocatalysts for high-performance lithium-oxygen batteries[J]. Nano Letters,2016,16(8):4932-4939. [57] WUJCIK K H,WANG D R,RAGHUNATHAN A,et al. Lithium polysulfide radical anions in ether-based solvents[J]. Journal of Physical Chemistry C,2016,120(33):18403-18410. [58] SUN Y M,LEE H W,SEH Z W,et al. Lithium sulfide/metal nanocomposite as a high-capacity cathode prelithiation material[J]. Advanced Energy Materials,2016,6(12):doi: 10.1002/aenm.201600154. [59] HAN F D,YUE J,FAN X L,et al. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite[J]. Nano Letters,2016,16(7):4521-4527. [60] CUI Z M,ZU C X,ZHOU W D,et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials,2016,28(32):doi: 10.1002/adma.201601382. [61] KIM K R,LEE K S,AHN C Y,et al. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator[J]. Scientific Reports,2016,6:doi: 10.1038/srep32433. [62] SAHORE R,LEVIN B D,PAN M,et al. Design principles for optimum performance of porous carbons in lithium-sulfur batteries[J]. Advanced Energy Materials,2016,6(14):doi: 10.1002/aenm.201600134. [63] JUNG Y,KANG B. Understanding abnormal potential behaviors at the 1st charge in Li2S cathode material for rechargeable Li-S batteries[J]. Physical Chemistry Chemical Physics,2016,18(31):21500-21507. [64] GLENNEBERG J,ANDRE F,BARDENHAGEN I,et al. A concept for direct deposition of thin film batteries on flexible polymer substrate[J]. Journal of Power Sources,2016,324:722-728. [65] OTOYAMA M,ITO Y,HAYASHI A,et al. Investigation of state-of-charge distributions for LiCoO2 composite positive electrodes in all-solid-state lithium batteries by raman imaging[J]. Chemistry Letters,2016,45(7):810-812. [66] [67] CZNOTKA E,JESCHKE S,GRUNEBAUM M,et al. Highly-fluorous pyrazolide-based lithium salt in PVDF-HFP as solid polymer electrolyte[J]. Solid State Ionics,2016,292:45-51. [68] ZHOU W D,WANG S F,LI Y T,et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society,2016,138(30):9385-9388. [69] LI D J,DANILOV D L,GAO L,et al. Degradation mechanisms of C-6/LiFePO4 batteries:Experimental analyses of cycling-induced aging[J]. Electrochimica Acta,2016,210:445-455. [70] MORONI R,BORNER M,ZIELKE L,et al. Multi-scale correlative tomography of a Li-ion battery composite cathode[J]. Scientific Reports,2016,6:doi: 10.1038/srep30109. [71] SINGLE F,HORSTMANN B,LATZ A. Dynamics and morphology of solid electrolyte interphase (SEI) [J]. Physical Chemistry Chemical Physics,2016,18(27):17810-17814. [72] CHEN B B,ZHOU J Q,CAI R. Analytical model for crack propagation in spherical nano electrodes of lithium-ion batteries[J]. Electrochimica Acta,2016,210:7-14. [73] SUN F,ZIELKE L,MARKOETTER H,et al. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron X-ray phase contrast tomography[J]. ACS Nano,2016,10(8):7990-7997. [74] WEBER D A,SENYSHYN A,WELDERT K S,et al. Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12[J]. Chemistry of Materials,2016,28(16):5905-5915. [75] ABDELLAHI A,URBAN A,DACEK S,et al. Understanding the effect of cation disorder on the voltage profile of lithium transition-metal oxides[J]. Chemistry of Materials,2016,28(15):5373-5383. [76] LANG M,DARMA M S,KLEINER K,et al. Post mortem analysis of fatigue mechanisms in LiNi0.8Co0.15Al0.05O2-LiNi0.5 Co0.2 Mn0.3O2- LiMn2O4/graphite lithium ion batteries[J]. Journal of Power Sources,2016,326:397-409. [77] SATO S,UNEMOTO A,IKEDA T,et al. Carbon-rich active materials with macrocyclic nanochannels for high-capacity negative electrodes in all-solid-state lithium rechargeable batteries[J]. Small,2016,12(25):3472. [78] SMYREK P,KIM H,ZHENG Y,et al. Laser-printing and femtosecond laser-structuring of electrode materials for the manufacturing of 3D lithium-ion micro-batteries. Laser 3D Manufacturing III[C]//Unite States:California,2016:doi: 10.1117/12.2211546. [79] ZIELKE L,SUN F,MARKOTTER H,et al. Synchrotron X-ray tomographic study of a silicon electrode before and after discharge and the effect of cavities on particle fracturing[J]. ChemElectroChem,2016,3(7):1170-1177. [80] PRIIMÄGI P,BRANDELL D,SRIVASTAV S,et al. Optimizing the design of 3D-pillar microbatteries using finite element modelling[J]. Electrochimica Acta,2016,209:138 -148. [81] LIM J,LI Y Y,ALSEM D H,et al. Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles[J]. Science,2016,353(6299):566-571. [82] LIU Z,VERHALLEN T W,SINGH D P,et al. Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4[J]. Journal of Power Sources,2016,324:358-367. [83] WANG J J,CHEN-WIEGART Y C,ENG C,et al. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles[J]. Nature Communications,2016,7:doi: 10.1038/ncomms12372. [84] GENT W E,LI Y Y,AHN S,et al. Persistent state-of-charge heterogeneity in relaxed, partially charged Li1-xNi1/3Co1/3Mn1/3O2 secondary particles[J]. Advanced Materials,2016,28(31):doi: 10.1002/adma.201601273. [85] WANG Z Y,LEE J Z,XIN H L,et al. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries[J]. Journal of Power Sources,2016,324:342-348. [86] DELP S A,BORODIN O,OLGUIN M,et al. Importance of reduction and oxidation stability of high voltage electrolytes and additives[J]. Electrochimica Acta,2016,209:498-510. [87] LUCK J,LATZ A. Theory of reactions at electrified interfaces[J]. Physical Chemistry Chemical Physics,2016,18(27):17799-17804. [88] BENITEZ L,SEMINARIO J M. Electron transport and electrolyte reduction in the solid-electrolyte interphase of rechargeable lithium ion batteries with silicon anodes[J]. Journal of Physical Chemistry C,2016,120(32):17978-17988. [89] LEGGESSE E G,TSAU K H,LIU Y T,et al. Adsorption and decomposition of ethylene carbonate on LiMn2O4 cathode surface[J]. Electrochimica Acta,2016,210:61-70. [90] URBAN A,MATTS I,ABDELLAHI A,et al. Computational design and preparation of cation-disordered oxides for high-energy-density Li-ion batteries[J]. Advanced Energy Materials,2016,6(15):doi: 10.1002/aenm.201600488. [91] WANG X L,XIAO R J,LI H,et al. Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in beta-Li3PS4 electrolyte[J]. Physical Chemistry Chemical Physics,2016,18(31):21269-21277. [92] TANAKA Y,IKEDA M,SUMITA M,et al. First-principles analysis on role of spinel (111) phase boundaries in Li4+3xTi5O12 Li-ion battery anodes[J]. Physical Chemistry Chemical Physics,2016,18(33):23383-23388. [93] MORADABADI A,BAKHTIARI M,KAGHAZCHI P. Effect of anode composition on solid electrolyte interphase formation[J]. Electrochimica Acta,2016,213:8-13. [94] SEIDL L,MARTENS S,MA J W,et al. In situ scanning tunneling microscopy studies of the SEI formation on graphite electrodes for Li+-ion batteries[J]. Nanoscale,2016,8(29):14004-14014. [95] SUMITA M,TANAKA Y,IKEDA M,et al. Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state lithium ion batteries[J]. Journal of Physical Chemistry C,2016,120(25):13332-13339. [96] ZHANG W,BOCK D C,PELLICCIONE C J,et al. Insights into ionic transport and structural changes in magnetite during multiple-electron transfer reactions[J]. Advanced Energy Materials,2016,6(10):doi: 10.1002/aenm.201502471. [97] HOWARD J,HOLZWARTH N A. First-principles simulations of the porous layered calcogenides Li2+xSnO3 and Li2+xSnS3[J]. Physical Review B,2016:doi: 10.1103/PhysRevB.94.064108. [98] CHONG E Q,LINGERFELT D B,PETRONE A,et al. Classical or quantum? A computational study of small ion diffusion in II-VI semiconductor quantum dots[J]. Journal of Physical Chemistry C,2016,120(34):19434-19441. [99] LIAO N B,ZHENG B R,ZHANG M,et al. Atomic investigation on reversible lithium storage in amorphous silicon oxycarbide as a high power anode material[J]. Journal of Materials Chemistry A,2016,4(31):12328-12333. [100] KANG J,HAN B. First-principles characterization of the unknown crystal structure and ionic conductivity of Li7P2S8I as a solid electrolyte for high-voltage Li ion batteries[J]. Journal of Physical Chemistry Letters,2016,7(14):2671-2675. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 陈志城, 李宗旭, 蔡玲, 刘易斯. 柔性金属空气电池的发展现状及未来展望[J]. 储能科学与技术, 2022, 11(5): 1401-1410. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||