储能科学与技术 ›› 2018, Vol. 7 ›› Issue (2): 211-220.doi: 10.12028/j.issn.2095-4239.2017.0152

• 研究及进展 • 上一篇    下一篇

燃料电池用碱性聚合物电解质关键技术

董琴,李存璞,魏子栋   

  1. 重庆大学化学化工学院,重庆 400044
  • 收稿日期:2017-10-20 修回日期:2018-01-23 出版日期:2018-03-01 发布日期:2018-03-01
  • 通讯作者: 李存璞,副教授,从事阴离子交换膜、有机电合成等研究,E-mail:lcp@cqu.edu.cn;魏子栋,教授,从事燃料电池关键功能材料研究,光解水体系的研究及其他新能源化工领域的研究,E-mail:zdwei@cqu.edu.cn。
  • 作者简介:董琴(1993—),女,硕士研究生,从事燃料电池用阴离子交换膜研究,E-mail:2680022916@qq.com
  • 基金资助:
    国家自然科学基金项目(21606027,91534205,21436003)。

Development of alkaline membrane technologies in fuel cells

DONG Qin, LI Cunpu, WEI Zidong   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received:2017-10-20 Revised:2018-01-23 Online:2018-03-01 Published:2018-03-01

摘要: 聚合物电解质(又称为离子交换膜)是燃料电池的重要结构组成部分,肩负着传递离子从而形成完整电池回路的作用。燃料电池用阴离子交换膜面临着离子传导率低,膜耐碱性差以及机械稳定性差等问题。本文通过对近期相关文献的探讨,综述了提高耐碱性和电导率的策略,着重介绍了季铵阳离子基团、咪唑阳离子基团、螺环季铵阳离子基团、吡咯阳离子基团以及构建交联结构、优化聚合物主链、在聚合物侧链引入保护基团等策略,重点分析了上述因素对于耐碱性的影响机理。对于电导率的提升策略,主要介绍了构建相分离以及构建可穿梭的离子交换基团两种方法。综合分析表明,通过构建亲疏水相分离结构、交联结构、改善聚合物主链、增强阳离子基团的碱稳定性等策略,有望在实现高电导率的同时获得高的稳定性。

关键词: 燃料电池, 离子交换膜, 聚合物电解质, OH传导率, 耐碱性

Abstract:

Polymer electrolytes are one of the key materials in fuel cells. Alkaline exchange membranes (AEMs), which can transport OH ions, have been intensive studied by many research groups. Alkaline environment can facilitate the reduction of oxygen molecules and therefore the non-precious metal catalyst can be used. However, AEMs are still facing some problems. The key problems of AEMs include the insufficient OH conductivity, the relative insufficient alkaline stability and poor mechanical properties. In this mini review, we discussed recent advances in literatures in AEM field, reviewed the strategy to improve the alkaline stability and OH conductivity. We discussed the performance and hydroxide stability of the widely reported cationic head groups, including the quaternary ammonium, imidazolium, spirocyclic quaternary ammonium, pyrrolidinium. Also the function of construction of cross-linked structures, optimization of polymer backbones, and the function of protective groups were discussed. The influence mechanisms of various factors on the alkaline stability are discussed emphatically. In conclusion, AEMs with high alkaline and high OH conductivity can be achieved by constructing the structure of hydrophilic/hydrophobic phase separation, cross-linked structures, or by optimizing polymer backbones with different structural cationic groups.

Key words: fuel cell, ion exchange membrane, polymer electrolyte, OH conductivity, alkaline stability