储能科学与技术 ›› 2018, Vol. 7 ›› Issue (4): 575-585.doi: 10.12028/j.issn.2095-4239.2018.0097
起文斌, 张华, 金周, 赵俊年, 武怿达, 詹元杰, 陈宇阳, 陈彬, 贲留斌, 俞海龙, 刘燕燕, 黄学杰
收稿日期:
2018-06-15
修回日期:
2018-06-19
出版日期:
2018-07-01
发布日期:
2018-06-20
通讯作者:
黄学杰,研究员,研究方向为锂离子电池相关性能及材料,E-mail:xjhuang@jphy.ac.an
作者简介:
起文斌(1992-),男,硕士研究生,研究方向为固态锂离子电池正极材料的研究,E-mail:qiwenbin16@mails.ucas.edu.cn
QI Wenbin, ZHANG Hua, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie
Received:
2018-06-15
Revised:
2018-06-19
Online:
2018-07-01
Published:
2018-06-20
摘要: 该文是一篇近两个月的锂电池文献评述,以"lithium"和"batter*"为关键词检索了Web of Science从2018年4月1日至2018年5月31日上线的锂电池研究论文,共有1807篇,选择其中100篇加以评论。正极材料主要研究了三元材料、富锂相材料和尖晶石材料的结构和表面结构随电化学脱嵌锂变化以及掺杂和表面包覆及界面层改进对其循环寿命的影响。硅基复合负极材料研究侧重于电极结构和电解液添加剂改进,金属锂负极的研究侧重于通过表面覆盖层的设计来提高其循环性能。电解液添加剂、固态电解质电池、锂硫电池的论文也有多篇。原位分析偏重于固态电池的界面,理论模拟工作涵盖储锂机理、动力学、界面SEI形成机理分析和固体电解质等。除了以材料为主的研究之外,还有多篇关于电池分析的研究论文。
中图分类号:
起文斌, 张华, 金周, 赵俊年, 武怿达, 詹元杰, 陈宇阳, 陈彬, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2018.4.1-2018.5.31)[J]. 储能科学与技术, 2018, 7(4): 575-585.
QI Wenbin, ZHANG Hua, JIN Zhou, ZHAO Junnian, WU Yida, ZHAN Yuanjie, CHEN Yuyang, CHEN Bin, BEN Liubin, YU Hailong, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2018 to May 31, 2018)[J]. Energy Storage Science and Technology, 2018, 7(4): 575-585.
[1] CHOI A, LIM J, KIM H J, et al. Site-selective in situ electrochemical doping for mn-rich layered oxide cathode materials in lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8(11):doi:10.1002/aenm.201702514. [2] TERANISHI T, KATSUJI N, CHAJIMA K, et al. Low-temperature high-rate capabilities of lithium batteries via polarization-assisted ion pathways[J]. Advanced Electronic Materials, 2018, 4(4):doi:10.1002/aelm.201700413. [3] ZHANG S J, DENG Y P, WU Q H, et al. Sodium-alginate-based binders for lithium-rich cathode materials in lithium-ion batteries to suppress voltage and capacity fading[J]. Chemelectrochem, 2018, 5(9):1321-1329. [4] LI X, QIAO Y, GUO S H, et al. Direct visualization of the reversible O2-/O-redox process in Li-rich cathode materials[J]. Advanced Materials, 2018, 30(14):doi:10.1002/adma.201705197. [5] KAN W H, CHEN D C, PAPP J K, et al. Unravelling solid-state redox chemistry in Li1.3Nb0.3Mn0.4O2 single-crystal cathode material[J]. Chemistry of Materials, 2018, 30(5):1655-1666. [6] LIU H S, HARRIS K J, JIANG M, et al. Unraveling the rapid performance decay of layered high-energy cathodes:From nanoscale degradation to drastic bulk evolution[J]. ACS Nano, 2018, 12(3):2708-2718. [7] MU L Q, LIN R L, XU R, et al. Oxygen release induced chemomechanical breakdown of layered cathode materials[J]. Nano Letters, 2018, 18(5):3241-3249. [8] LI J Y, LI W D, WANG S Y, et al. Facilitating the operation of lithium-ion cells with high-nickel layered oxide cathodes with a small dose of aluminum[J]. Chemistry of Materials, 2018, 39(9):3101-3109. [9] LA MONACA A, DE GIORGIO F, SOAVI F, et al. 1,3-dioxolane:A strategy to improve electrode interfaces in lithium ion and lithium-sulfur batteries[J]. Chemelectrochem, 2018, 5(9):1272-1278. [10] CHEN B, BEN L B, CHEN Y Y, et al. Understanding the formation of the truncated morphology of high-voltage spinel LiNi0.5Mn1.5O4 via direct atomic-level structural observations[J]. Chemistry of Materials, 2018, 30(6):2174-2182. [11] INTAN N N, KLYUKIN K, ALEXANDROV V. Theoretical insights into oxidation states of transition metals at (001) and (111) LiNi0.5Mn1.5O4 spinel surfaces[J]. Journal of the Electrochemical Society, 2018, 165(5):A1099-A1103. [12] LAPPING J G, DELP S A, ALLEN J L, et al. Changes in electronic structure upon Li deintercalation from LiCoPO4 derivatives[J]. Chemistry of Materials, 2018, 30(6):1898-1906. [13] DUPRE N, CUISINIER M, ZHENG Y, et al. Evolution of LiFePO4 thin films interphase with electrolyte[J]. Journal of Power Sources, 2018, 382:45-55. [14] CHERKASHININ G, LEBEDEV M V, SHARATH S U, et al. Exploring redox activity in a LiCoPO4-LiCo2P3O10 tailored positive electrode for 5 V lithium ion batteries:Rigid band behavior of the electronic structure and stability of the delithiated phase[J]. Journal of Materials Chemistry A, 2018, 6(12):4966-4970. [15] DIAZ-LOPEZ M, FREIRE M, JOLY Y, et al. Local structure and lithium diffusion pathways in Li4Mn2O5 high capacity cathode probed by total scattering and XANES[J]. Chemistry of Materials, 2018, 39(9):3060-3070. [16] HOUSE R A, JIN L Y, MAITRA U, et al. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox[J]. Energy & Environmental Science, 2018, 11(4):926-932. [17] LI Y D, KHURRAM A, GALLANT B M. A high-capacity lithium-gas battery based on sulfur fluoride conversion[J]. Journal of Physical Chemistry C, 2018, 122(13):7128-7138. [18] LEE J, KITCHAEV D A, KWON D H, et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials[J]. Nature, 2018, 556(7700):185-190. [19] JUNG S K, HWANG I, CHO S P, et al. New iron-based intercalation host for lithium-ion batteries[J]. Chemistry of Materials, 2018, 30(6):1956-1964. [20] AMIN R, HOSSAIN M M, ZAKARIA Y. Interfacial kinetics and ionic diffusivity of the electrodeposited MoS2 film[J]. ACS Applied Materials & Interfaces, 2018, 10(16):13509-13518. [21] ZENG W W, WANG L, PENG X, et al. Enhanced ion conductivity in conducting polymer binder for high-performance silicon anodes in advanced lithium-ion batteries[J]. Advanced Energy Materials, 2018, 8(11):doi:10.1002/aenm.201702314. [22] DOSE W M, PIERNAS-MUNOZ M J, MARONI V A, et al. Capacity fade in high energy silicon-graphite electrodes for lithium-ion batteries[J]. Chemical Communications, 2018, 54(29):3586-3589. [23] GU Y Y, YANG S M, ZHU G B, et al. The effects of cross-linking cations on the electrochemical behavior of silicon anodes with alginate binder[J]. Electrochimica Acta, 2018, 269:405-414. [24] SON Y, SIM S, MA H, et al. Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes[J]. Advanced Materials, 2018, 30(15):doi.org/10.1002/adma. 201705430. [25] ZHANG Q B, CHEN H X, LUO L L, et al. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11(3):669-681. [26] BASU S, SURESH S, GHATAK K, et al. Utilizing van der waals slippery interfaces to enhance the electrochemical stability of silicon film anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(16):13442-13451. [27] GENDENSUREN B, OH E S. Dual-crosslinked network binder of alginate with polyacrylamide for silicon/graphite anodes of lithium ion battery[J]. Journal of Power Sources, 2018, 384:379-386. [28] HAYS K A, RUTHER R E, KUKAY A J, et al. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?[J]. Journal of Power Sources, 2018, 384:136-144. [29] WANG C, HAN Y Y, LI S H, et al. Thermal Lithiated-TiO2:A robust and electron-conducting protection layer for Li-Si alloy anode[J]. ACS Applied Materials & Interfaces, 2018, 10(15):12750-12758. [30] YOO H, PARK E, BAE J, et al. Si nanocrystal-embedded SiOx nanofoils:Two-dimensional nanotechnology-enabled high performance Li storage materials[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-25159-4. [31] WANG Y K, ZHANG Q L, LI D W, et al. Mechanical property evolution of silicon composite electrodes studied by environmental nanoindentation[J]. Advanced Energy Materials, 2018, 8(10):doi:10.1002/aenm.201702578. [32] ZHAO Q, TU Z Y, WEI S Y, et al. Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries[J]. Angewandte Chemie-International Edition, 2018, 57(4):992-996. [33] FOROOZAN T, SOTO F A, YURKIV V, et al. Synergistic effect of graphene oxide for impeding the dendritic plating of Li[J]. Advanced Functional Materials, 2018, 28(15):doi:10.1002/adfm.201705917. [34] TU Z Y, CHOUDHURY S, ZACHMAN M J, et al. Fast ion transport at solid-solid interfaces in hybrid battery anodes[J]. Nature Energy, 2018, 3(4):310-316. [35] LIU Y, XIE K, PAN Y, et al. Impacts of the properties of anode solid electrolyte interface on the storage life of Li-ion batteries[J]. Journal of Physical Chemistry C, 2018, 122(17):9411-9416. [36] GARCIA G, DIECKHOFER S, SCHUHMANN W, et al. Exceeding 6500 cycles for LiFePO4/Li metal batteries through understanding pulsed charging protocols[J]. Journal of Materials Chemistry A, 2018, 6(11):4746-4751. [37] GU Y, WANG W W, LI Y J, et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-03466-8. [38] LI L, BASU S, WANG Y P, et al. Self-heating-induced healing of lithium dendrites[J]. Science, 2018, 359(6383):1513-1516. [39] YANG C P, ZHANG L, LIU B Y, et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(15):3770-3775. [40] CHA E, PATEL M D, PARK J, et al. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries[J]. Nature Nanotechnology, 2018, 13(4):doi:10.1038/s41565-018-0061-y. [41] LI X, TAO J H, HU D H, et al. Stability of polymeric separators in lithium metal batteries in a low voltage environment[J]. Journal of Materials Chemistry A, 2018, 6(12):5006-5015. [42] STEWART D M, PEARSE A J, KIM N S, et al. Tin oxynitride anodes by atomic layer deposition for solid-state batteries[J]. Chemistry of Materials, 2018, 30(8):2526-2534. [43] GONZALEZ J F, ANTARTIS D A, CHASIOTIS I, et al. In situ X-ray micro-CT characterization of chemo-mechanical relaxations during Sn lithiation[J]. Journal of Power Sources, 2018, 381:181-189. [44] WANG X, ZENG W, HONG L, et al. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates[J]. Nature Energy, 2018, 3(3):227-235. [45] TRINH N D, LEPAGE D, AYME-PERROT D, et al. An artificial lithium protective layer that enables the use of acetonitrile-based electrolytes in lithium metal batteries[J]. Angewandte Chemie-International Edition, 2018, 57(18):5072-5075. [46] CHENG Q, ZHANG Y. Multi-channel graphite for high-rate lithium ion battery[J]. Journal of the Electrochemical Society, 2018, 165(5):A1104-A1109. [47] YAN X F, LI Z B, YING H J, et al. A novel thin solid electrolyte film and its application in all-solid-state battery at room temperature[J]. Ionics, 2018, 24(5):1545-1551. [48] PUT B, VEREECKEN P M, STESMANS A. On the chemistry and electrochemistry of LiPON breakdown[J]. Journal of Materials Chemistry A, 2018, 6(11):4848-4859. [49] GONZALEZ F, GREGORIO V, RUBIO A, et al. Ionic liquid-based thermoplastic solid electrolytes processed by solvent-free procedures[J]. Polymers, 2018, 10(2):doi:10.3390/polym10020124. [50] TSUKASAKI H, MORI Y, OTOYAMA M, et al. Crystallization behavior of the Li2S-P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer[J]. Scientific Reports, 2018, 8:doi:10.1038/s41598-018-24524-7. [51] KRAUSKOPF T, CULVER S P, ZEIER W G. Bottleneck of diffusion and inductive effects in Li10Ge1-xSnxP2S12[J]. Chemistry of Materials, 2018, 30(5):1791-1798. [52] ZENG X X, YIN Y X, SHI Y, et al. Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries[J]. Chem., 2018, 4(2):298-307. [53] FERRARESI G, EL KAZZI M, CZORNOMAZ L, et al. Electrochemical performance of all-solid-state Li-ion batteries based on garnet electrolyte using silicon as a model electrode[J]. ACS Energy Letters, 2018, 3(4):1006-1012. [54] HUANG X, LIU C, LU Y, et al. A Li-garnet composite ceramic electrolyte and its solid-state Li-S battery[J]. Journal of Power Sources, 2018, 382:190-197. [55] JUDEZ X, PISZCZ M, COYA E, et al. Stable cycling of lithium metal electrode in nanocomposite solid polymer electrolytes with lithium bis(fluorosulfonyl)imide[J]. Solid State Ionics, 2018, 318:95-101. [56] ALDALUR I, MARTINEZ-IBANEZ M, PISZCZ M, et al. Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes[J]. Journal of Power Sources, 2018, 383:144-149. [57] ZHAO P C, XIANG Y, XU Y, et al. Dense garnet-like Li5La3Nb2O12 solid electrolyte prepared by self consolidation method[J]. Journal of Power Sources, 2018, 388:25-31. [58] LIU J W, SONG X, ZHOU L, et al. Fluorinated phosphazene derivative-A promising electrolyte additive for high voltage lithium ion batteries:From electrochemical performance to corrosion mechanism[J]. Nano Energy, 2018, 46:404-414. [59] ZHANG X Q, CHEN X, CHENG X B, et al. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes[J]. Angewandte Chemie-International Edition, 2018, 57(19):5301-5305. [60] BELTROP K, KLEIN S, NOLLE R, et al. Triphenylphosphine oxide as highly effective electrolyte additive for graphite/NMC811 lithium ion cells[J]. Chemistry of Materials, 2018, 30(8):2726-2741. [61] HANSEN S, SHREE S, NEUBUSER G, et al. Corset-like solid electrolyte interface for fast charging of silicon wire anodes[J]. Journal of Power Sources, 2018, 381:8-17. [62] BEICHEL W, KLOSE P, BLATTMANN H, et al. Simple green synthesis and electrochemical performance of a new fluorinated carbonate as additive for lithium-ion batteries[J]. Chemelectrochem, 2018, 5(10):1415-1420. [63] LAI C H, ASHBY D S, LIN T C, et al. Application of poly(3-hexylthiophene-2,5-diyl) as a protective coating for high rate cathode materials[J]. Chemistry of Materials, 2018, 30(8):2589-2599. [64] LACEY S D, KIRSCH D J, LI Y J, et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes[J]. Advanced Materials, 2018, 30(12):doi:10.1002/adma.201705651. [65] ASADI M, SAYAHPOUR B, ABBASI P, et al. A lithium-oxygen battery with a long cycle life in an air-like atmosphere[J]. Nature, 2018, 555(7697):502-506. [66] KWAK W J, PARK S J, JUNG H G, et al. Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li-O2 batteries[J]. Advanced Energy Materials, 2018, 8(9):doi:10.1002/aenm.201702258. [67] WANG L, PAN J, ZHANG Y, et al. A Li-air battery with ultralong cycle life in ambient air[J]. Advanced Materials, 2018, 30(3):doi:10.1002/adma.201704378. [68] HOEFLING A, NGUYEN D T, PARTOVI-AZAR P, et al. Mechanism for the stable performance of sulfur-copolymer cathode in lithium-sulfur battery studied by solid-state NMR spectroscopy[J]. Chemistry of Materials, 2018, 39(9):2915-2923. [69] YE F M, LIU M N, YAN X, et al. In situ electrochemically derived amorphous-Li2S for high performance Li2S/graphite full cell[J]. Small, 2018, 14(17):doi:10.1002/smll.201703871. [70] WU F X, POLLARD T P, ZHAO E B, et al. Layered LiTiO2 for the protection of Li2S cathodes against dissolution:Mechanisms of the remarkable performance boost[J]. Energy & Environmental Science, 2018, 11(4):807-817. [71] NOELLE D J, SHI Y, WANG M, et al. Aggressive electrolyte poisons and multifunctional fluids comprised of diols and diamines for emergency shutdown of lithium-ion batteries[J]. Journal of Power Sources, 2018, 384:93-97. [72] INOISHI A, NISHIO A, YOSHIOKA Y, et al. A single-phase all-solid-state lithium battery based on Li1.5Cr0.5Ti1.5(PO4)3 for high rate capability and low temperature operation[J]. Chemical Communications, 2018, 54(25):3178-3181. [73] CHEVRIER V L, LIU L, WOHL R, et al. Design and testing of prelithiated full cells with high silicon content[J]. Journal of the Electrochemical Society, 2018, 165(5):A1129-A1136. [74] ANTONOPOULOS B K, STOCK C, MAGLIA F, et al. Solid electrolyte interphase:Can faster formation at lower potentials yield better performance?[J]. Electrochimica Acta, 2018, 269:331-339. [75] BREUER S, UITZ M, WILKENING H M R. Rapid Li ion dynamics in the interfacial regions of nanocrystalline solids[J]. Journal of Physical Chemistry Letters, 2018, 9(8):2093-2097. [76] KUBOTA K, SIROMA Z, SANO H, et al. Diffusion of lithium cation in low-melting lithium molten salts[J]. Journal of Physical Chemistry C, 2018, 122(8):4144-4149. [77] WU X H, VILLEVIEILLE C, NOVAK P, et al. Monitoring the chemical and electronic properties of electrolyte-electrode interfaces in all-solid-state batteries using operando X-ray photoelectron spectroscopy[J]. Physical Chemistry Chemical Physics, 2018, 20(16):11123-11129. [78] CHIEN P H, FENG X Y, TANG M X, et al. Li distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by Li-7 MRI[J]. Journal of Physical Chemistry Letters, 2018, 9(8):1990-1998. [79] WANDT J, JAKES P, GRANWEHR J, et al. Quantitative and time-resolved detection of lithium plating on graphite anodes in lithium ion batteries[J]. Materials Today, 2018, 21(3):231-240. [80] LIU Y H, TAKEDA S, KANEKO I, et al. Understanding the improved high-temperature cycling stability of a LiNi0.5Mn0.3Co0.2O2/graphite cell with vinylene carbonate:A comprehensive analysis approach utilizing LC-MS and DART-MS[J]. Journal of Physical Chemistry C, 2018, 122(11):5864-5870. [81] CARTER R, HUHMAN B, LOVE C T, et al. X-ray computed tomography comparison of individual and parallel assembled commercial lithium iron phosphate batteries at end of life after high rate cycling[J]. Journal of Power Sources, 2018, 381:46-55. [82] LAIK B, RESSEJAC I, VENET C, et al. Comparative study of electrochemical performance of commercial solid-state thin film Li microbatteries[J]. Thin Solid Films, 2018, 649:69-74. [83] STRAUSS F, DORRER L, BRUNS M, et al. Lithium tracer diffusion in amorphous LixSi for low Li concentrations[J]. Journal of Physical Chemistry C, 2018, 122(12):6508-6513. [84] ILOTT A J, MOHAMMADI M, SCHAUERMAN C M, et al. Rechargeable lithium-ion cell state of charge and defect detection by in-situ inside-out magnetic resonance imaging[J]. Nature Communications, 2018, 9:doi:10.1038/s41467-018-04192. [85] CABANERO M A, BOARETTO N, RODER M, et al. Direct determination of diffusion coefficients in commercial Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(5):A847-A855. [86] SHEN F Y, DIXIT M B, XIAO X H, et al. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography[J]. ACS Energy Letters, 2018, 3(4):1056-1061. [87] DINKELACKER F, MARZAK P, YUN J, et al. Multistage mechanism of lithium intercalation into graphite anodes in the presence of the solid electrolyte interface[J]. ACS Applied Materials & Interfaces, 2018, 10(16):14063-14069. [88] MUY S, BACHMAN J C, GIORDANO L, et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics[J]. Energy & Environmental Science, 2018, 11(4):850-859. [89] LI N, WEI W F, XIE K Y, et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries[J]. Nano Letters, 2018, 18(3):2067-2073. [90] ASAKURA D, NANBA Y, MAKINOSE Y, et al. Large charge-transfer energy in LiFePO4 revealed by full-multiplet calculation for the Fe L-3-edge soft X-ray emission spectra[J]. Chemphyschem, 2018, 19(8):988-992. [91] LIU Z X, HU W Y, GAO F, et al. An ab initio study for probing iodization reactions on metallic anode surfaces of Li-I2 batteries[J]. Journal of Materials Chemistry A, 2018, 6(17):7807-7814. [92] ZEVGOLIS A, WOOD B C, MEHMEDOVIC Z, et al. Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries[J]. Apl. Materials, 2018, 6(4):doi:10.1063/1.5011378. [93] KAZEMIABNAVI S, MALIK R, ORVANANOS B, et al. The effect of surface-bulk potential difference on the kinetics of intercalation in core-shell active cathode particles[J]. Journal of Power Sources, 2018, 382:30-37. [94] FANG Q H, WANG Q, LI J, et al. A systematic investigation of cycle number, temperature and electric field strength effects on Si anode[J]. Materials & Design, 2018, 144:1-13. [95] ALBINA J M, MARUSCZYK A, HAMMERSCHMIDT T, et al. Finite-temperature property-maps of Li-Mn-Ni-O cathode materials from ab initio calculations[J]. Journal of Materials Chemistry A, 2018, 6(14):5687-5694. [96] KIM T, LEYDEN M R, ONO L K, et al. Stacked-graphene layers as engineered solid-electrolyte interphase (SEI) grown by chemical vapour deposition for lithium-ion batteries[J]. Carbon, 2018, 132:678-690. [97] DUY T V T, OHWAKI T, IKESHOJI T, et al. High-throughput computational approach to Li/vacancy configurations and structural evolution during delithiation:The case of Li2MnO3 surface[J]. Journal of Physical Chemistry C, 2018, 122(10):5496-5508. [98] CANEPA P, DAWSON J A, GAUTAM G S, et al. Particle morphology and lithium segregation to surfaces of the Li7La3Zr2O12 solid electrolyte[J]. Chemistry of Materials, 2018, 39(9):3019-3027. [99] ARNESON C, WAWRZYNIAKOWSKI Z D, POSTLEWAITE J T, et al. Lithiation and delithiation processes in lithium-sulfur batteries from ab initio molecular dynamics simulations[J]. Journal of Physical Chemistry C, 2018, 122(16):8769-8779. [100] CRAWFORD A J, HUANG Q, KINTNER-MEYER M C W, et al. Lifecycle comparison of selected Li-ion battery chemistries under grid and electric vehicle duty cycle combinations[J]. Journal of Power Sources, 2018, 380:185-193. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 时雨, 张忠, 杨晶莹, 钱薇, 李昊, 赵祥, 杨欣桐. 储能电池系统提供AGC调频的机会成本建模与市场策略[J]. 储能科学与技术, 2022, 11(7): 2366-2373. |
[3] | 黄鹏, 聂枝根, 陈峥, 舒星, 沈世全, 杨继鹏, 申江卫. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294. |
[4] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[5] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[6] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[7] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[8] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[9] | 周伟东, 黄秋, 谢晓新, 陈科君, 李薇, 邱介山. 固态锂电池聚合物电解质研究进展[J]. 储能科学与技术, 2022, 11(6): 1788-1805. |
[10] | 李一涛, 沈凯尔, 庞全全. 有机物辅助的硫化物电解质基固态电池[J]. 储能科学与技术, 2022, 11(6): 1902-1918. |
[11] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[12] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[13] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[14] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[15] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||