[1] ZHANG C P, SHARKH S M, LI X, et al. The performance of a soluble lead-acid flow battery and its comparison to a static lead-acid battery[J]. Energy Conversion and Management, 2011, 52(12):3391-3398.
[2] KRISHNA M, FRASER E J, WILLS R G A, et al. Developments in soluble lead flow batteries and remaining challenges:An illustrated review[J]. Journal of Energy Storage, 2018, 15:69-90.
[3] 阎智刚, 胡信国. 提高铅酸电池活性物质利用率[J]. 电池, 2001, 31(2):90-92. YAN Zhigang, HU Xinguo. Imoproving active material utilization of lead acid batteries[J]. Bimonthly Battery, 2001, 31(2):90-92.
[4] 黄滨. 废铅酸电池回收处置清洁生产与循环经济实现[J]. 中国金属通报, 2018(5):20-21. HUANG Bin. Clean production and recycling economy of waste leadacid batteries[J]. China Metal Bulletin, 2018(5):20-21.
[5] 张华民. 液流电池技术[M]. 北京:化学工业出版社, 2015. ZHANG Huamin. Flow battery technology[M]. Beijing:Chemical Industry Press, 2015.
[6] 陈渊. 采用氟硼酸铅电解液的铅液流电池性能研究[D]. 武汉:华中科技大学:2017. CHEN Yuan. A study on performances of lead RedOx flow batteries with lead fluoroborate electrolyte[D]. Wuhan:Huazhong University of Science and Technology, 2017.
[7] WILLS R G A, COLLINS J, STRATTON-CAMPBELL D, et al. Developments in the soluble lead-acid flow battery[J]. J. Appl. Electrochem., 2010, 40(5):955-965.
[8] WHITE J C, BALDWIN J H, PEEBLES E J, et al. Lead perchloric acid primary cell:US, 2492206[P]. 1949-12-27.
[9] McDonald G D, WEISSMAN E Y, ROEMER T S. Lead-fluoroboric acid battery[J]. Journal of the Electrochemical Society, 1972, 119(6):660-663.
[10] BECK F, WURMB R, BOEHLKE K. Secondary battery:US, 4119767[P]. 1978-10-10.
[11] HENK P O, PIONTKOWSKI Z Z A. Lead salt electric storage battery:US, 4331744[P]. 1982-05-25.
[12] COLLINS J, KEAR G, LI X H, et al. A novel flow battery:A lead acid battery based on an electrolyte with soluble lead(II) Part VIII. The cycling of a 10 cm×10 cm flow cell[J]. Journal of Power Sources, 2010, 195(6):1731-1738.
[13] COLLINS J, LI X H, PLETCHER D, et al. A novel flow battery:a lead acid battery based on an electrolyte with soluble lead(II). Part IX:Electrode and electrolyte conditioning with hydrogen peroxide[J]. Journal of Power Sources, 2010, 195(9):2975-2978.
[14] HAZZA A, PLETCHER D, WILLS R. A novel flow battery-a lead acid battery based on an electrolyte with soluble lead(II)-IV. The influence of additives[J]. Journal of Power Sources, 2005, 149:103-111.
[15] HAZZA A, PLETCHER D,WILLS R. A novel flow battery:A lead acid battery based on an electrolyte with soluble lead(II)-Part I. Preliminary studies[J]. Physical Chemistry Chemical Physics, 2004, 6(8):1773-1778.
[16] LI X H, PLETCHER D, WALSH F C. A novel flow battery:A lead acid battery based on an electrolyte with soluble lead(II) Part VII. Further studies of the lead dioxide positive electrode[J]. Electrochimica Acta, 2009, 54(20):4688-4695.
[17] LI X H, PLETCHER D, WALSH F C. Electrodeposited lead dioxide coatings[J]. Chemical Society Reviews, 2011, 40(7):3879-3894.
[18] LOW C T J, PLETCHER D, WALSH F C. The electrodeposition of highly reflective lead dioxide coatings[J]. Electrochem. Commun., 2009, 11(6):1301-1304.
[19] PLETCHER D,WILLS R. A novel flow battery-A lead acid battery based on an electrolyte with soluble lead(II)-III. The influence of conditions on battery performance[J]. Journal of Power Sources, 2005, 149:96-102.
[20] PLETCHER D,WILLS R. A novel flow battery:A lead acid battery based on an electrolyte with soluble lead(II)-Part II. Flow cell studies[J]. Physical Chemistry Chemical Physics, 2004, 6(8):1779-1785.
[21] PLETCHER D,ZHOU H, KEAR G, et al. A novel flow battery-A lead-acid battery based on an electrolyte with soluble lead(II) Part VI. Studies of the lead dioxide positive electrode[J]. Journal of Power Sources, 2008, 180(1):630-634.
[22] PLETCHER D, ZHOU H, KEAR G, et al. A novel flow battery-A lead-acid battery based on an electrolyte with soluble lead(II) V. Studies of the lead negative electrode[J]. Journal of Power Sources, 2008, 180(1):621-629.
[23] CLARKE R L, DOUGHERTY B J, HARRISON S, et al. Battery with bifunctional electrolyte:US, 6986966B2[P]. 2005.
[24] VERDE M G,CARROLL K J,WANG Z Y, et al. Achieving high efficiency and cyclability in inexpensive soluble lead flow batteries[J]. Energy & Environmental Science, 2013, 6(5):1573-1581.
[25] DONG J X, WU X, CHEN Y, et al. A study on Pb2+/Pb electrodes for soluble lead redox flow cells prepared with methanesulfonic acid and recycled lead[J]. Journal of Applied Electrochemistry, 2016, 46(8):861-868.
[26] BATES A, MUKERJEE S, LEE S C, et al. An analytical study of a lead-acid flow battery as an energy storage system[J]. Journal of Power Sources, 2014, 249:207-218.
[27] 白冲. 充放电控制策略对蓄电池效率和寿命的影响研究[D]. 西安:陕西科技大学, 2016. BAI Chong. Research on the effect of charge-discharge control strategies on battery efficiency and lifespan[D]. Xi'an:Shaanxi University of Science and Technology, 2016.
[28] GERNON M D, WU M, BUSZTA T, et al. Environmental benefits of methanesulfonic acid:Comparative properties and advantages[J]. Green Chemistry, 1999, 1(3):127-140.
[29] KRISHNA M, WALLIS L P J, WILLS R G A, et al. Measurement of key electrolyte properties for improved performance of the soluble lead flow battery[J]. International Journal of Hydrogen Energy, 2017, 42(29):18491-18498.
[30] VELICHENKO A B, AMADELLI R, GRUZDEVA E V, et al. Electrodeposition of lead dioxide from methanesulfonate solutions[J]. Journal of Power Sources, 2009, 191(1):103-110.
[31] ZHAO Y, DING Y, LI Y T, et al. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage[J]. Chemical Society Reviews, 2015, 44(22):7968-7996.
[32] 张华民, 王晓丽. 全钒液流电池技术最新研究进展[J]. 储能科学与技术, 2013, 2(3):281-288. ZHANG Huamin, WANG Xiaoli. Recent progress on vanadium flow battery technologies[J]. Energy Storage Science and Technology, 2013, 2(3):281-288.
[33] OURY A, KIRCHEV A, BULTEL Y. Cycling of soluble lead flow cells comprising a honeycomb-shaped positive electrode[J]. Journal of Power Sources, 2014, 264:22-29.
[34] LATHA J T, JAYANTI S. Hydrodynamic analysis of flow fields for redox flow battery applications[J]. Journal of Applied Electrochemistry, 2014, 44(9):995-1006.
[35] HOBERECHT M A. Pumping power considerations in the designs of NASA-Redox flow cells:NASA TM-82598[R/OL]. Lewis Research Center, NASA, 1981. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810019981.pdf
[36] INOUE M, KOBAYASHI M. Electrode material for flow-through type electrolytic cell, wherein the electrode comprises carbonaceous material having at least one groove:US, 5648184A[P]. 1997-7-15.
[37] HARPER M A M. Electrochemical battery incorporating internal manifolds:US, 7687193B2[P]. 2010-3-30.
[38] TIAN C H.,CHEIN R, HSUEH K L, et al. Design and modeling of electrolyte pumping power reduction in redox flow cells[J]. Rare Metals, 2011, 30(s1):16-21.
[39] MIYABAYASHIM M, SATO K, TAYAMA T, KAGEYAMA Y, OYAMA H. Redox Flow type battery:US, 5851694[P]. 1997. https://patents.glgoo.top/patent/US5851694A/en?oq=US5851694A.
[40] 苏伟. 化学储能技术及其在电力系统中的应用[M]. 北京:科学出版社, 2013:200-344. SU Wei. Chemical energy storage technology and its application in power system[M]. Beijing:Science Press, 2013:200-344. |