1 |
Al-ABIDI A A, MAT S B, SOPIAN K, et al. Review of thermal energy storage for air conditioning systems[J]. Renewable& Sustainable Energy Reviews, 2012, 16(8): 5802-5819.
|
2 |
MEMON S A, LIAO W, YANG S, et al. Development of composite PCMs by incorporation of paraffin into various building materials[J]. Materials, 2015, 8(2): 499.
|
3 |
KHATEEB S A, AMIRUDDIN S, FARID M, et al. Thermal management of Li-ion battery with phase change material for electric scooters: Experimental validation[J]. Journal of Power Sources, 2005, 142(1/2): 345-353.
|
4 |
SABBAH R, KIZILEI R, SELMAN J R, et al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources, 2015, 182(2): 630-638.
|
5 |
叶锋, 曲江兰, 仲俊瑜, 等. 相变储热材料研究进展[J]. 过程工程学报, 2010, 10(6): 1231-1241.
|
|
YE Feng, QU Jianglan, ZHONG Junyu, et al. Research advances in phase change materials for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2010, 10(6): 1231-1241.
|
6 |
SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable & Sustainable Energy Reviews, 2009, 13(2): 318-345.
|
7 |
BAETENS R, JELLE B P, GUSTAVSEN A. Phase change materials for building applications: A state-of-the-art review[J]. Energy & Buildings, 2010, 42(9): 1361-1368.
|
8 |
关志猛. 石蜡基复合相变材料的制备研究[D]. 沈阳: 沈阳建筑大学, 2018.
|
|
GUAN Zhimeng. Study on the preparation of paraffin based composite phase change materials[D]. Shenyang: Shenyang Jianzhu University, 2018.
|
9 |
ZHAO C Y, LU W, TIAN Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy, 2010, 84(8): 1402-1412.
|
10 |
WU S Y, WANG H, XIAO S, et al. An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials[J]. Journal of Thermal Analysis & Calorimetry, 2012, 110(3): 1127-1131.
|
11 |
MILLS A, FARID M, SELMAN J R, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix[J]. Applied Thermal Engineering, 2006, 26(14/15): 1652-1661.
|
12 |
KIM S, DRZA L, LAWRENCE T, et al. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets[J]. Solar Energy Materials & Solar Cells, 2009, 93(1): 136-142.
|
13 |
METTAWE E, EMANBELLAH S, ASSASS A, et al. Thermal conductivity enhancement in a latent heat storage system[J]. Solar Energy, 2007, 81(7): 839-845.
|
14 |
WU S, ZHU D, ZHANG X, et al. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM)[J]. Energy & Fuels, 2010, 24(3): 1894-1898.
|
15 |
KUMARESAN V, VELRAJ R, DAS S K. The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification[J]. Heat & Mass Transfer, 2012, 48(8): 1345-1355.
|
16 |
MURUGAN P, GANESH K P, KUMARESAN V, et al. Thermal energy storage behaviour of nanoparticle enhanced PCM during freezing and melting[J]. Phase Transitions, 2017 (4): 1-17.
|
17 |
陶艳平. 导热增强型复合相变材料的影响因素及传热机理研究[D]. 郑州: 河南工业大学, 2016.
|
|
TAO Yanping. Study on influencing factors and heat transfer mechanism of heat conduction enhanced composite phase change materials[D]. Zhengzhou: Henan University of Technology, 2016.
|
18 |
夏莉, 张鹏, 周圆, 等. 石蜡与石蜡/膨胀石墨复合材料充/放热性能研究[J]. 太阳能学报, 2010, 31(5): 610-614.
|
|
XIA Li, ZHANG Peng, ZHOU Yuan, et al. Study on the charging/discharging characteristics of paraffin and paraffin/expanded graphite composite material[J]. Acta Energiae Solaris Sinica, 2010, 31(5): 610-614.
|
19 |
杨学贵, 曾攀. 纳米级石墨晶体的各向异性力学性能的计算[J]. 应用基础与工程科学学报, 2006, 14(3): 375-383.
|
|
YANG Xuegui, ZENG Pan. Numerical simulation of anisotropic mechanical properties of nano-graphite crystals[J]. Journal of Basic Science and Engineering, 2006, 14(3): 375-383.
|
20 |
邱海鹏, 刘朗. 高导热炭基功能材料[J]. 新型炭材料, 2002, 17 (4): 80.
|
|
QIU Haipeng, LIU Lang. Carbon matrix function materials of high thermal conductivity[J]. New Carbon Materials, 2002, 17 (4): 80.
|
21 |
高晓晴, 郭全贵, 刘朗, 等. 高导热炭材料的研究进展[J]. 功能材料, 2006, 37(2): 173-177.
|
|
GAO Xiaoqing, GUO Quangui, LIU Lang, et al. The study progress on carbon materials with high thermal conductivity[J]. Journal of Functional Materials, 2006, 37(2): 173-177.
|
22 |
KUMARASINGHE K D M S P K, KUMARA G R A, RAJAPAKSE R M G, et al. Activated coconut shell charcoal based counter electrode for dye-sensitized solar cells[J]. Organic Electronics, 2019, 71: 93-97.
|
23 |
JEFFRY S N A, JAYA R P, HASSAN N A, YACCOB H, et al. Mechanical performance of asphalt mixture containing nano-charcoal coconut shell ash [J]. Construction and Building Materials, 2018, 173: 40-48.
|
24 |
谢凤, 葛世荣, 李新年, 等. 表面活性剂在润滑油中对纳米石墨分散稳定性的影响[J]. 润滑与密封, 2012, 37(4): 1-5.
|
|
XIE Feng, GE Shirong, LI Xinnian, et al. Influence of surfactants on the dispersion stability of nanographite in the lubricating oil[J]. Lubrication Engineering, 2012, 37(4): 1-5.
|
25 |
JOHNATHAN J V, SANESHAN G, PETER V. Heat transfer enhancement in nano-fluids suspensions: Possible mechanisms and explanations[J]. International Journal of Heat & Mass Transfer, 2005, 48(13): 2673-2683.
|
26 |
KHALIL K, KAMBIZ V, MARILYN L. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J]. International Journal of Heat & Mass Transfer, 2003, 46(19): 3639-3653.
|
27 |
麦松威. 高等无机结构化学第二版[M]. 北京: 北京大学出版社, 2006: 381.
|