储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1691-1701.doi: 10.19799/j.cnki.2095-4239.2020.0167
收稿日期:
2020-05-06
修回日期:
2020-06-15
出版日期:
2020-11-05
发布日期:
2020-10-28
通讯作者:
吴旭
E-mail:d201677834@hust.edu.cn;pyofxuwu@hust.edu.cn
作者简介:
古月园(1994—),女,博士研究生,从事二氧化碳电催化研究E-mail:Yueyuan GU(), Jucai WEI, Jindong LI, Luyang WANG, Xu WU()
Received:
2020-05-06
Revised:
2020-06-15
Online:
2020-11-05
Published:
2020-10-28
Contact:
Xu WU
E-mail:d201677834@hust.edu.cn;pyofxuwu@hust.edu.cn
摘要:
电化学还原二氧化碳技术可以解决可再生能源(如太阳能)供需不匹配的问题,将过剩的电能转化为具有高附加值的化学品储存,同时减少二氧化碳排放,缓解环境压力。早期研究多在H型电解池中进行,但是这与二氧化碳电化学还原技术的实际工业应用方式差别较大,且受到传质限制,面临电流密度较低的问题。本文主要聚焦于采用连续式二氧化碳电化学还原反应器的相关研究,介绍目前常用的几种反应器结构,对电解器各组成部分、运行条件、可能的优化方式如新型气体扩散电极结构等、电解器失效机理及可能的修复方法进行了探讨。同时认为,由于各研究中采用的电解器结构、组成及运行参数存在差异,电解器中参比电极的使用对于比较各研究中阴极催化剂性能十分有必要。最后,总结提出了二氧化碳电解器的几种改进方式:①催化剂层浆料制备工艺,黏结剂的选择;②优化气体扩散电极制备工艺,基底的选择;③高效稳定的聚合物电解质膜的开发;④运行操作参数优化。
中图分类号:
古月圆, 韦聚才, 李金东, 王路阳, 吴旭. 电化学还原二氧化碳电解器相关研究概述及展望[J]. 储能科学与技术, 2020, 9(6): 1691-1701.
Yueyuan GU, Jucai WEI, Jindong LI, Luyang WANG, Xu WU. Overview and prospect of studies on electrochemical reduction of carbon dioxide electrolyzers[J]. Energy Storage Science and Technology, 2020, 9(6): 1691-1701.
表1
部分连续式二氧化碳电解器运行参数及主要结论"
setup | membrane | current collector | catalysts | reference electrode | feeding | electrolyte composition | main results | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
cathode | anode | cathode | anode | |||||||
(a) | Nafion? 117 | Al | Ag 10mg/1.5 cm2 | Pt 10mg/1.5 cm2 | Home-made Ag/Ag+ | CO2 2.5 sccm solution 0.5 mL/min | 18% EMIM BF4 | 100 mM H2SO4 | 1.5~2.5 V, CO FE>96% for at least 7 hours | [ |
(d) | none | Al | Ag 0.75 mg/cm2 | Pt/C 4.25 mg/cm2 | External Ag/AgCl | CO2 7 sccm solution 0.5mL/min | 1 mol/L KCl | -1.56 V vs Ag/AgCl Air-brushed , CO FE (95±5)%; hand-painted, CO FE (83±14)% | [ | |
(d) | none | Al and graphite | Ag 0.9 mg/cm2 | Pt 1.0 mg/cm2 | none | CO2 diluted by N2 7 sccm solution 0.4 mL/min | 1 mol/L KCl | 3 V, 10%~100% v/v CO2, CO FE>80% | [ | |
(b) | BPM | gold-coated graphite | Ag BiOx | NiFeOx | none | - | 0.5 mol/L KHCO3 saturated with CO2 | 0.1 mol/L KOH | 50 mA/cm2, CO FE>60% | [ |
(d) | none | Stainless steel | Ag (2±0.1) mg/cm2 | IrO2 (2±0.1) mg/cm2 | Ag/AgCl (inlet) | CO2 17 sccm solution 0.5 mL/min | 3 mol/L KOH | 2.75 V, 342.8 mA/cm2 CO (101.2%) | [ | |
(a) | AEM | - | Ag | IrO2 | none | CO2 10 sccm | 50% EMIMCI | 0.5 mol/L H2SO4 | 50 mA/cm2, CO FE 97.08% pH adjusted to 6.6, 25 mA/cm2, CO FE 99.1% | [ |
(d) | none | Al | Ag 0.75 mg/cm2 | Pt/C 4.25 mg/cm2 | External Ag/AgCl | CO2 7 sccm solution 0.5mL/min | 1 mol/L KCl | -1.62 V vs Ag/AgCl (cell potential 3V), CO FE ~98%, partial current density ~90mA/cm2 | [ | |
CN/MWCNT 2.39 mg/cm2 | -1.68 V vs Ag/AgCl (cell potential 3V), CO FE ~93%, partial current density ~86 mA/cm2 | |||||||||
(c) | CEM | Ti | Ag or Cu (5mg/cm2) | IrO2 (2mg/cm2) | Ag/AgCl | CO2 4.5 sccm | 0.5 mol/L K2SO4 | Cu, -0.8 V vs. RHE, CO FE ~75% Ag, -0.8 V vs. RHE, CO FE ~80% | [ | |
(d) | none | Al | MWNT/PyPBI/Au 0.34 mg/cm2 | Pt /C 4.25 mg/cm2 | Ag/AgCl (outlet) | CO2 7 sccm solution 0.5 mL/min | 1 mol/L KCl | -1.4 V vs Ag/AgCl, CO FE 92% | [ | |
(d) | none | stainless steel | MWNT/PyPBI/Au (1±0.1) mg/cm2 | IrO2 (4.25±0.25) mg/cm2 | Ag/AgCl (inlet) | CO2 17 sccm solution 0.5mL/min | 2 mol/L KOH | -0.22 V vs RHE (cell potential-1.7 V) CO FE 98.3% | [ | |
(b) | CEM | titanium | Cu | IrO2 | none | both 100 sccm | CO2 | humidified N2(25、50、75%) | relative humidity 72.5%, 30 oC, 6 V Hydrocarbons FE 0.12%; relative humidity 73.7 %, 70 oC, 2.4 V hydrocarbons FE 0.11% | [ |
(a) | AEM | Stainless steel | Cu 1.0 mg/cm2 | IrO2 1.0 mg/cm2 | Ag/AgCl (outlet) | CO2 7 sccm; solution 0.5 mL/min(-2~-3.5 V)0.1 mL/min (-1.6~-2 V) | 1 mol/L KOH | 1 mol/L KOH | -0.58 V vs. RHE, C2H4 and C2H5OH FE 46%, partial current density ~200 mA/cm2 | [ |
(c) | Nafion? 117 | - | Cu2O 1 mg/cm2 | Ti | Ag/AgCl | CO2 10~40 mL/min solution 1~3 mL/min | 0.5 mol/L KHCO3 | 0.5 mol/L KHCO3 | 10 mA/cm2 CH3OH FE 42.3%, rT=83.2 μmol/(m2·s-1) | [ |
Cu2O/ZnO 1mg/cm2 | 10 mA/cm2 CH3OH FE 27.5%, rT=50.8 μmol/(m2·s-1) | |||||||||
(b) | PBI | carbon paper | Cu-CNF 0.5 mg/cm2 | IrO2 0.5 mg/cm2 | - | CO2 0.5 NmL/min N2 6 NmL/min | CO2 | N2 1 mol/L H3PO4 saturator | 110 ℃, -0.8 mA/cm2, acetaldehyde FE 85%, r>24 nmol/(h·cm-2); 110 ℃, -1.6 mA/cm2, acetaldehyde FE 70%, r>55nmol/(h·cm-2) | [ |
(b) | Nafion115 AAEM | - | 1 mg/cm2 Cu/CNTs Pt/C Pd/C | Pt/C | none | both 20 mL/min | humidified CO2 (100%) | humidified H2(100%) | 40 ℃, 3V, CO, r=8.88 μmol/(h·cm-2), r=0.75 μmol/(h·cm-2), r=7.59 μmol/(h·cm-2) | [ |
(c) | Nafion? 117 | - | Sn 1.5 mg/cm2 | DSA | Ag/AgCl | CO2 0.57 mL/(min·cm-2) | 0.45 mol/L KHCO3 + 0.5 mol/L KCl | 1 mol/L KOH | 40 mA/cm2, cell potential 3.21 V, Formate FE 70.5% | [ |
(b) | BPM | - | Sn | Ir-MMO | none | solution 10 mL/min | pressured CO2 0.5mol/L KHCO3 | pressured N2 1mol/L KOH | 3.5 V, 40 bar, ~30 mA/cm2, HCOOH FE ~90% 4 V, 50 bar, ~100 mA/cm2, HCOOH FE ~65% | [ |
CEM | pressured CO2 1mol/L KHCO3 | pressured N2 0.5mol/L H2SO4 | 3.5 V, 40 bar, ~50 mA/cm2, HCOOH FE ~90% 3.5 V, 50 bar, ~60 mA/cm2, HCOOH FE ~80% | |||||||
(d) | none | graphite | Ru–Pd/C 2 mg/cm2 | Pt/C 2 mg/cm2 | Ag/AgCl (outlet) | CO2 5sccm solution 0.5 mL/min | 0.5 mol/L KHCO3 | 3.25 V, HCOOH FE~ 16%, EE~ 7% | [ | |
Sn 5 mg/cm2 | 0.5 mol/L KCl+1mol/L HCl (pH=4) | 3V, ~100 mA/cm2 HCOOH FE 89%, EE 45% | ||||||||
(b) | Nafion117 | - | 1mg/cm2 Pt/C Pt-Ru/C | Pt/C 1mg/cm2 | DHE | Both 50 sccm | N2 or CO2 (fully humidified) | H2 (fully humidified) | 80 ℃ ,0.06 V vs. DHE CH3OH FE 35% CH3OH FE 75% | [ |
(b) | Nafion? 115 | titanium | PtRu/C metal 0.5 mg/cm2 | IrRuOx 0.4 mg/cm2 | none | CO2 50 mL/min solution 4 mL/min | humidified CO2 | H2O | 40 ℃, 1.25V, CH3OH r=0.9 μmol/(g·h-1) 95 ℃, 1.25V, CH3OH r=56 μmol/(g·h-1) | [ |
(b) | Nafion 115 | gold-plated graphite (anode) | Indium | Pt/C | none | - | 1mol/L NaHCO3 | 10%(w/v)NaOH | 40 mA/cm2, HCOOH FE ~77% | [ |
AEM | 1 mol/L NaHCO3 | 40 mA/cm2, HCOOH FE 80% | ||||||||
(b) | Nafion117 | - | Pb | DSA | Ag/AgCl | CO2 200 mL/min solution 1.44 mL /(min·cm-2) | 0.45 mol/L KHCO3 + 0.5 mol/L KCl | 1 mol/L KOH | 10.5 mA/cm2, HCOOH FE 57% | [ |
(b) | Nafion | - | N-doped graphene 0.3~0.5 mg/cm2 | Pt 0.3 mg/cm2 | DHE | CO2 45 sccm H2 50 sccm | CO2 | H2 | -0.58 V vs RHE, ~1.8 mA/cm2, CO FE ~85% for at least 5 h | [ |
(b) | AEM | Ti | Ni-NG 0.5 mg/cm2 | IrO2 0.5 mg/cm2 | none | CO2 50 sccm solution 2 mL/min | humidified CO2 | 0.1 mol/L KHCO3 | 2.78V, ~ 50 mA/cm2, CO FE >90%, for at least 8 h, 3.81 mmol/h | [ |
(b) | PSMIM AEM | Ti | Ni-NG 1.25 mg/cm2 | IrO2 1.25 mg/cm2 | none | CO2 50 or 500 sccm solution 2 or 10 mL/min for different area | humidified CO2 | 0.1 mol/L KHCO3 | 2×2 cm2, 2.46V, ~80 mA/cm2, CO FE~100% for 20h10×10 cm2, 2.8V, ~8A, CO FE >90% for 6h, r=3.34 L/h | [ |
1 | LOBACCARO P, SINGH M R, CLARK E L, et al. Effects of temperature and gas-liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO2 reduction electrocatalysts[J]. Physical Chemistry Chemical Physics, 2016, 18: 26777-26785. |
2 | JOUNY M, LUC W, JIAO F. General techno-economic analysis of CO2 electrolysis systems[J]. Industrial & Engineering Chemistry Research, 2018, 57: 2165-2177. |
3 | LIU K, SMITH W A, BURDYNY T. Introductory guide to assembling and operating gas diffusion electrodes for electrochemical CO2 reduction[J]. ACS Energy Letters, 2019, 4: 639-643. |
4 | AHANGARI H T, PORTAIL T, MARSHALL A T. Comparing the electrocatalytic reduction of CO2 to CO on gold cathodes in batch and continuous flow electrochemical cells[J]. Electrochemistry Communications, 2019, 101: 78-81. |
5 | ENDRODI B, BENCSIK G, DARVAS F, et al. Continuous-flow electroreduction of carbon dioxide[J]. Progress in Energy and Combustion Science, 2017, 62: 133-154. |
6 | CAVE E R, MONTOYA J H, KUHL K P, et al. Electrochemical CO2 reduction on Au surfaces: Mechanistic aspects regarding the formation of major and minor products[J]. Physical Chemistry Chemical Physics, 2017, 19: 15856-15863. |
7 | LIU Z, MASEL R I, CHEN Q, et al. Electrochemical generation of syngas from water and carbon dioxide at industrially important rates[J]. Journal of CO2 Utilization, 2016, 15: 50-56. |
8 | SHIRONITA S, KARASUDA K, SATO K, et al. Methanol generation by CO2 reduction at a Pt-Ru/C electrocatalyst using a membrane electrode assembly[J]. Journal of Power Sources, 2013, 240: 404-410. |
9 | PEREZ-RODRIGUEZ S, BARRERAS F, PASTOR E, et al. Electrochemical reactors for CO2 reduction: From acid media to gas phase[J]. International Journal of Hydrogen Energy, 2016, 41: 19756-19765. |
10 | WANG G, PAN J, JIANG S P, et al. Gas phase electrochemical conversion of humidified CO2 to CO and H2 on proton-exchange and alkaline anion-exchange membrane fuel cell reactors[J]. Journal of CO2 Utilization, 2018, 23: 152-158. |
11 | KRIESCHER S M A, KUGLER K, HOSSEINY S S, et al. A membrane electrode assembly for the electrochemical synthesis of hydrocarbons from CO2(g) and H2O(g)[J]. Electrochemistry Communications, 2015, 50: 64-68. |
12 | GUTIERREZ-GUERRA N, VALVERDE J L, ROMERO A, et al. Electrocatalytic conversion of CO2 to added-value chemicals in a high-temperature proton-exchange membrane reactor[J]. Electrochemistry Communications, 2017, 81: 128-131. |
13 | VENNEKOETTER J B, SENGPIEL R, WESSLING M. Beyond the catalyst: How electrode and reactor design determine the product spectrum during electrochemical CO2 reduction[J]. Chemical Engineering Journal, 2019, 364: 89-101. |
14 | DELACOURT C, RIDGWAY P L, KERR J B, et al. Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature[J]. Journal of the Electrochemical Society, 2008, 155: B42-B49. |
15 |
PARK G, HONG S, CHOI M, et al. Au on highly hydrophobic carbon substrate for improved selective CO production from CO2 in gas-phase electrolytic cell[J]. Catalysis Today, 2019, doi: org/10.1016/j.cattod. 2019.06.066.
doi: org/10.1016/j.cattod. 2019.06.066 |
16 | HONG S, LEE S, KIM S, et al. Anion dependent CO/H2 production ratio from CO2 reduction on Au electro-catalyst[J]. Catalysis Today, 2017, 295: 82-88. |
17 | KUMAR B, BRIAN J P, ATLA V, et al. New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction[J]. Catalysis Today, 2016, 270: 19-30. |
18 | POROSOFF M D, YAN B, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy & Environmental Science, 2016, 9: 62-73. |
19 | LU Q, JIAO F. Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering[J]. Nano Energy, 2016, 29: 439-456. |
20 | ZHU D D, LIU J L, QIAO S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28: 3423-3452. |
21 |
LIU J, GUO C, VASILEFF A, et al. Nanostructured 2D materials: Prospective catalysts for electrochemical CO2 reduction[J]. Small Methods, 2017, doi: 10.1002/smtd.201600006.
doi: 10.1002/smtd.201600006 |
22 | XIE H, WANG T, LIANG J, et al. Cu-based nanocatalysts for electrochemical reduction of CO2[J]. Nano Today, 2018, 21: 41-54. |
23 | ZHANG L, ZHAO Z J, GONG J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angewandte Chemie-International Edition, 2017, 56: 11326-11353. |
24 |
MISTRY H, VARELA A S, KUEHL S, et al. Nanostructured electrocatalysts with tunable activity and selectivity[J]. Nature Reviews Materials, 2016, doi: 10.1038/natrevmats.2016.9.
doi: 10.1038/natrevmats.2016.9 |
25 | WANG Z L, LI C, YAMAUCHI Y. Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide[J]. Nano Today, 2016, 11: 373-391. |
26 | KUTZ R B, CHEN Q, YANG H, et al. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis[J]. Energy Technology, 2017, 5: 929-936. |
27 | JHONG H R, BRUSHETT F R, KENIS P J. The effects of catalyst layer deposition methodology on electrode performance[J]. Advanced Energy Materials, 2013, 3: 589-599. |
28 | LUC W, ROSEN J, JIAO F. An Ir-based anode for a practical CO2 electrolyzer[J]. Catalysis Today, 2017, 288: 79-84. |
29 | VERMA S, HAMASAKI Y, KIM C, et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer[J]. ACS Energy Letters, 2018, 3: 193-198. |
30 | JHONG H R, TORNOW C E, KIM C, et al. Gold nanoparticles on polymer-wrapped carbon nanotubes: An efficient and selective catalyst for the electroreduction of CO2[J]. Chemphyschem, 2017, 18: 3274-3279. |
31 | JHONG H R, TORNOW C E, SMID B, et al. A nitrogen-doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density[J]. Chemsuschem, 2017, 10: 1094-1099. |
32 | ROSEN B A, SALEHI-KHOJIN A, THORSON M R, et al. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials[J]. Science, 2011, 334: 643-644. |
33 | ALVAREZ-GUERRA M, QUINTANILLA S, IRABIEN A. Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode[J]. Chemical Engineering Journal, 2012, 207: 278-284. |
34 | DINH C T, BURDYNY T, KIBRIA M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360: 783-787. |
35 | LI Y C, ZHOU D, YAN Z, et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells[J]. ACS Energy Letters, 2016, 1: 1149-1153. |
36 | LEONARD M E, CLARKE L E, FORNER-CUENCA A, et al. Investigating electrode flooding in a flowing electrolyte, gas-fed carbon dioxide electrolyzer[J]. Chemsuschem, 2020, 13: 400-411. |
37 | KIM B, HILLMAN F, ARIYOSHI M, et al. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO[J]. Journal of Power Sources, 2016, 312: 192-198. |
38 | CAO-THANG D, DE ARQUER F P G, SINTON D, et al. High rate, selective, and stable electroreduction of CO2 to CO in basic and neutral media[J]. ACS Energy Letters, 2018, 3: 2835-2840. |
39 | WEEKES D M, SALVATORE D A, REYES A, et al. Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51: 910-918. |
40 | HORI Y, ITO H, OKANO K, et al. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide[J]. Electrochimica Acta, 2003, 48: 2651-2657. |
41 | YIN Z, PENG H, WEI X, et al. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water[J]. Energy & Environmental Science, 2019, 12: doi: 10.1039/C9EE01204D. |
42 | HORI Y, MURATA A, TAKAHASHI R. Formation of hydrocarbons in the electrochemical reduction of carbon-dioxide at a copper electrode in aqueous-solution[J]. Journal of the Chemical Society-Faraday Transactions I, 1989, 85: 2309-2326. |
43 | KIM B, MA S, JHONG H R, et al. Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer[J]. Electrochimica Acta, 2015, 166: 271-276. |
44 | VERMA S, LU X, MA S, et al. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes[J]. Physical Chemistry Chemical Physics, 2016, 18: 7075-7084. |
45 | WHIPPLE D T, FINKE E C and KENIS P J A. Microfluidic reactor for the electrochemical reduction of carbon dioxide: The effect of pH[J]. Electrochemical and Solid State Letters, 2010, 13: D109-D111. |
46 | JONES R J R, WANG Y, LAI Y, et al. Reactor design and integration with product detection to accelerate screening of electrocatalysts for carbon dioxide reduction[J]. Review of Scientific Instruments, 2018, 89: doi: 10.1063/1.5049704. |
47 | ZHENG T, JIANG K, TA N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J]. Joule, 2019, 3: 265-278. |
48 | MA S, SADAKIYO M, LUO R, et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer[J]. Journal of Power Sources, 2016, 301: 219-228. |
49 | SHIRONITA S, SATO K, YOSHITAKE K, et al. Pt-Ru/C anode performance of polymer electrolyte fuel cell under carbon dioxide atmosphere[J]. Electrochimica Acta, 2016, 206: 254-258. |
50 | SHIRONITA S, KARASUDA K, SATO M, et al. Feasibility investigation of methanol generation by CO2 reduction using Pt/C-based membrane electrode assembly for a reversible fuel cell[J]. Journal of Power Sources, 2013, 228: 68-74. |
51 | RAMDIN M, MORRISON A R T, DE GROEN M, et al. High pressure electrochemical reduction of CO2 to formic acid/formate: A comparison between bipolar membranes and cation exchange membranes[J]. Industrial & Engineering Chemistry Research, 2019, 58: 1834-1847. |
52 | NWABARA U O, COFELL E R, VERMA D S, et al. Durable cathodes and electrolyzers for the efficient aqueous electrochemical reduction of CO2[J]. Chemsuschem, 2020, 13: 855-875. |
53 | ROGERS C, PERKINS W S, VEBER G, et al. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes[J]. Journal of the American Chemical Society, 2017, 139: 4052-4061. |
54 | JEON H S, KUNZE S, SCHOLTEN F, et al. Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene[J]. ACS Catalysis, 2018, 8: 531-535. |
55 | YANG H, KACZUR J J, SAJJAD S D, et al. Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes[J]. Journal of CO2 Utilization, 2017, 20: 208-217. |
56 | ALBO J, IRABIEN A. Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol[J]. Journal of Catalysis, 2016, 343: 232-239. |
57 | CASTILLO A DEL, ALVAREZ-GUERRA M, IRABIEN A. Continuous electroreduction of CO2 to formate using Sn gas diffusion electrodes[J]. AIChE Journal, 2014, 60: 3557-3564. |
58 | SEBASTIAN D, PALELLA A, BAGLIO V, et al. CO2 reduction to alcohols in a polymer electrolyte membrane co-electrolysis cell operating at low potentials[J]. Electrochimica Acta, 2017, 241: 28-40. |
59 | NARAYANAN S R, HAINES B, SOLER J, et al. Electrochemical conversion of carbon dioxide to formate in alkaline polymer electrolyte membrane cells[J]. Journal of the Electrochemical Society, 2011, 158: A167-A173. |
60 | WU J, LIU M, SHARMA P P, et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam[J]. Nano Letters, 2016, 16: 466-470. |
61 | JIANG K, SIAHROSTAMI S, ZHENG T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science, 2018, 11: 893-903. |
[1] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[2] | 陶飞跃, 王焕然, 李瑞雄, 赵静, 葛刚强, 贺新, 陈昊. 利用环境再冷的二氧化碳储能热电联产系统及其热力学分析[J]. 储能科学与技术, 2022, 11(5): 1492-1501. |
[3] | 李乐璇, 徐玉杰, 尹钊, 郭欢, 张显荣, 陈海生, 周学志. 超临界二氧化碳储能系统㶲损特性分析[J]. 储能科学与技术, 2021, 10(5): 1824-1834. |
[4] | 王 灿, 马 盼, 祝国梁, 马永超, 季鹏程, 魏水淼, 赵 健, 于治水. 锂离子电池长寿命石墨电极研究现状与展望[J]. 储能科学与技术, 2021, 10(1): 59-67. |
[5] | 梁大宇, 包婷婷, 高田慧, 张健. 高比能NMC811/SiO-C软包电池循环失效分析[J]. 储能科学与技术, 2018, 7(3): 459-464. |
[6] | 王冠邦,张信荣. 热电储能技术及二氧化碳在其中的应用[J]. 储能科学与技术, 2017, 6(6): 1239-. |
[7] | 宋鹏翔, 赵波, 杨岑玉, 王乐, 金翼, 杨士慧. 利用捕集CO2制燃料化学品储存可再生能源电力的能效分析与评价[J]. 储能科学与技术, 2016, 5(1): 78-84. |
[8] | 谢佳, 彭文, 杨续来. 尖晶石镍锰酸锂全电池常温循环寿命分析[J]. 储能科学与技术, 2014, 3(6): 624-628. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||