1 |
潘聪, 王春明, 刘松, 等. 分布式电网中混合储能系统的接入型式探讨[J]. 船电技术, 2014, 34(6): 46-49.
|
|
PAN C, WANG C M, LIU S, et al. Reviews on the structure of hybrid energy storage system ligated into distributed grid[J]. Marine Electric & Electronic Engineering, 2014, 34(6): 46-49.
|
2 |
杨江涛, 孙春顺, 杨安, 等. 峰谷电价下配电网中分布式储能的容量配置[J]. 电力科学与工程, 2016, 32(11): 12-17.
|
|
YANG J T, SUN C S, YANG A, et al. Capacity configuration of distribution energy storage in distribution network under the peak-valley[J]. Electric Power Science and Engineering, 2016, (11): 12-17.
|
3 |
余耀, 孙华, 许俊斌, 等. 压缩空气储能技术综述[J]. 装备机械, 2013(1): 68-74.
|
|
YU Y, SUN H, XU J B, et al. Overview of compressed air energy storage technology[J]. Equipment Machinery, 2013(1): 68-74.
|
4 |
XING L, WANG J, DOONER M, et al. Overview of current development in electrical energy storage technologies and the application potential in power system operation[J]. Applied Energy, 2015, 137: 511-536.
|
5 |
CHEN L J, ZHENG T W, MEI S W, et al. Review and prospect of compressed air energy storage system[J]. J Mod Power Syst Clean Energy, 2016, 4(4): 529-541.
|
6 |
高建强, 庄绪增, 敬赛. CAES电站储气室热力学特性的数值模拟研究[J]. 电力科学与工程, 2018, 34(12): 71-76.
|
|
GAO J Q, ZHUANG X Z, JIN S. Numerical simulation study on thermodynamic characteristics of gas storage chamber of CAES power station[J]. Electric Power Science and Engineering, 2018, 34(12): 71-76.
|
7 |
RAJU M, KHAITAN S K. Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant[J]. Applied Energy, 2012, 89(1): 474-481.
|
8 |
KUSHNIRN, DAYANA, ULLMANNA. Temperature and pressure variations within compressed air energy storage caverns[J]. International Journal of Heat & Mass Transfer, 2012, 55(21/22): 5616-5630.
|
9 |
ZHOU S W, XIA C C, DU S G, et al. An analytical solution for mechanical responses induced by temperature and air pressure in a lined rock cavern for underground compressed air energy storage[J]. Rock Mechanics & Rock Engineering, 2015, 48(2): 749-770.
|
10 |
XIA C, ZHOU Y, ZHOU S, et al. A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns[J]. Renewable Energy, 2015, 74: 718-726.
|
11 |
QUAST P, CROTOGINO F. Initial experience with the compressed-air energy storage (CAES) project of Nordwest deutsche Kraftwerke AG (NWK) at Huntorf/West Germany[J]. Erdoel Erdgas Zeitschrift, 1979, 95: 310-314.
|
12 |
GEISSBÜHLER L, BECATTINI V, ZANGANEH G , et al. Pilot-scale demonstration of advanced adiabatic compressed air energy storage, Part 1: Plant description and tests with sensible thermal-energy storage[J]. Journal of Energy Storage, 2018, 17: 129-139.
|
13 |
蒋中明, 刘澧源, 李双龙, 等. 压气储能平江试验库受力特性数值研究[J]. 长沙理工大学学报(自然科学版), 2017, 14(4): 62-68.
|
|
JIANG Z M, LIU L Y, LI S L, et al. Numerical study on mechanical characteristics of the Pingjiang pilot cavern for compressed air energy storage[J]. Journal of Changsha University of Science and Technology (Natural Science), 2017, 14(4): 62-68.
|
14 |
刘佳. 超临界空气蓄热蓄冷数值与实验研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2012.
|
|
LIU J. Numerical and experimental study heat and cold energy storage using supercritical air[D]. Beijing: Chinese Academy of Science(Institute of Engineering Thermophysics, Chinese Academy of Sciences), 2012.
|
15 |
HE W , LUO X , EVANS D , et al. Exergy storage of compressed air in cavern and cavern volume estimation of the large-scale compressed air energy storage system[J]. Applied Energy, 2017, 208: 745-757.
|
16 |
夏才初, 张平阳, 周舒威, 等. 大规模压气储能洞室稳定性和洞周应变分析[J]. 岩土力学, 2014, 35(5): 1391-1398.
|
|
XIA C C, ZHANG P Y, ZHOU S W, et al. Stability and tangential strain analysis of large-scale compressed air energy storage cavern[J]. Rock and Soil Mechanics, 2014, 35(5): 1391-1398.
|