储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 1002-1015.doi: 10.19799/j.cnki.2095-4239.2021.0029
收稿日期:
2021-01-19
修回日期:
2021-02-17
出版日期:
2021-05-05
发布日期:
2021-04-30
通讯作者:
李敏,李敬发
E-mail:chenqiang@nuist.edu.cn;liminbuaa@126.com;aplijf@nuist.edu.cn
作者简介:
陈强(1999—),男,本科生,主要从事普鲁士蓝类似物及其衍生物在钾离子电池中的应用,E-mail:基金资助:
Qiang CHEN1,2(), Min LI1(), Jingfa LI3()
Received:
2021-01-19
Revised:
2021-02-17
Online:
2021-05-05
Published:
2021-04-30
Contact:
Min LI,Jingfa LI
E-mail:chenqiang@nuist.edu.cn;liminbuaa@126.com;aplijf@nuist.edu.cn
摘要:
由于不可再生能源资源有限,可再生能源的使用受环境影响较大,开发新一代能量储存与转换系统势在必行。钾离子电池因其能量密度高、成本低廉等优势极有可能成为下一代大型商业化储能系统,普鲁士蓝类似物以其开放的三维框架结构、快速脱嵌钾离子能力等优势受到极大关注,以其为模板合成的衍生物被广泛研究。本文通过对相关文献的调研,详细介绍钾离子电池和普鲁士蓝类似物及其衍生物的结构,总结钾离子电池和普鲁士蓝类似物及其衍生物的优势,综述了普鲁士蓝类似物及其衍生物在钾离子电池中的应用现状,就正负极材料性能展开详细的介绍。对于正极材料,主要介绍铁基、锰基、其他种类及部分取代普鲁士蓝类似物以及相关改性策略,重点分析了不同种类材料的充放电机理;对于负极材料,着重介绍了普鲁士蓝衍生物及新颖的合成方法、碳材料改性策略,并就其与传统的碳负极材料的优势与劣势进行了简要总结。综合分析表明,通过探究合成方法、采取部分取代、引入低维结构等策略,有望增强普鲁士蓝类似物及其衍生物在钾离子电池中的未来应用。
中图分类号:
陈强, 李敏, 李敬发. 普鲁士蓝类似物及其衍生物在钾离子电池中的应用[J]. 储能科学与技术, 2021, 10(3): 1002-1015.
Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015.
1 | ZHANG K M, WEN Z G. Review and challenges of policies of environmental protection and sustainable development in China[J]. Journal of Environmental Management, 2008, 88(4): 1249-1261. |
2 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
3 | YANG Z G, ZHANG J L, KINTNER-MEYER M C, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
4 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
5 | MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 (0<x≤1): A new cathode material for batteries of high energy density[J]. Solid State Ionics, 1981, (3/4): 171-174. |
6 | WHITTINGHAM M S. Ultimate limits to intercalation reactions for lithium batteries[J]. Chemical Reviews, 2014, 114(23): 11414-11443. |
7 | YAROSHEVSKY A A. Abundances of chemical elements in the Earth's crust[J]. Geochemistry International, 2006, 44(1): 48-55. |
8 | KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie, 2015, 54(11): 3431-3448. |
9 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
10 | WU X Y, LEONARD D P, JI X L. Emerging non-aqueous potassium-ion batteries: Challenges and opportunities[J]. Chemistry of Materials, 2017, 29(12): 5031-5042. |
11 | MARCUS Y. Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents (III): Standard potentials of selected electrodes[J]. Pure and Applied Chemistry, 1985, 57(8): 1129-1132. |
12 | HAMON Y, BROUSSE T, JOUSSE F, et al. Aluminum negative electrode in lithium ion batteries[J]. Journal of Power Sources, 2001(97/98): 185-187. |
13 | VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4): 1-11. |
14 | MATSUDA Y, NAKASHIMA H, MORITA M, et al. Behavior of some ions in mixed organic electrolytes of high energy density batteries[J]. Journal of the Electrochemical Society, 1981, 128(12): 2552-2556. |
15 | KOMABA S, HASEGAWA T, DAHBI M, et al. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors[J]. Electrochemistry Communications, 2015, 60: 172-175. |
16 | SAGANE F, ABE T, IRIYAMA Y, et al. Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes[J]. Journal of Power Sources, 2005, 146(1): 749-752. |
17 | OKOSHI M, YAMADA Y, KOMABA S, et al. Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: A comparison with lithium, sodium, and magnesium ions[J].Journal of the Electrochemical Society, 2017, 164(2): A54-A60. |
18 | PHAM T A, KWEON K E, SAMANTA A, et al. Solvation and dynamics of sodium and potassium in ethylene carbonate from ab initio molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2017, 121(40): 21913-21920. |
19 | ZHAO Q, WANG J B, LU Y, et al. Oxocarbon salts for fast rechargeable batteries[J]. Angewandte Chemie International Edition, 2016, 55(40): 12528-12532. |
20 | JIAN Z L, LUO W, JI X L. Carbon electrodes for K-ion batteries[J].Journal of the American Chemical Society, 2015, 137(36): 11566-11569. |
21 | ZHANG W , LIU Y J, GUO Z P. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering[J]. Science Advances, 2019, 5(5): doi: 10.1126/sciadv.aav7412. |
22 | RAJAGOPALAN R, TANG Y G, JI X B, et al. Advancements and challenges in potassium ion batteries: A comprehensive review[J].Advanced Functional Materials, 2020, 30(12): doi: 10.1002/adfm.201909486. |
23 | ZHANG C L, XU Y, ZHOU M, et al. Potassium Prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries[J]. Advanced Functional Materials, 2017, 27(4): doi: 10.1002/adfm.201604307. |
24 | WU X Y, SHAO M M, WU C H, et al. Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23706-23712. |
25 | WANG R Y, WESSELLS C D, HUGGINS R A, et al. Highly reversible open framework nanoscale electrodes for divalent ion batteries[J]. Nano Letters, 2013, 13(11): 5748-5752. |
26 | WESSELLS C D, MCDOWELL M T, PEDDADA S V, et al. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage[J]. ACS Nano, 2012, 6(2): 1688-1694. |
27 | KUMAR A, YUSUF S M, KELLER L. Structural and magnetic properties of Fe[Fe(CN)6]·4H2O[J]. Physical Review B, 2005, 71(5): doi: 10.1103/PhysRevB.71.054414. |
28 | SONG J, WANG L, LU Y H, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society, 2015, 137(7): 2658-2664. |
29 | IMANISHI N, MORIKAWA T, KONDO J, et al. Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery[J]. Journal of Power Sources, 1999, 79(2): 215-219. |
30 | YOU Y, WU X L, YIN Y X, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2014, 7(5): 1643-1647. |
31 | ASAKURA D, LI C H, MIZUNO Y, et al. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: Core@ shell nanoparticles with enhanced cyclability[J]. Journal of the American Chemical Society, 2013, 135(7): 2793-2799. |
32 | PAOLELLA A, FAURE C, TIMOSHEVSKII V, et al. A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives[J]. Journal of Materials Chemistry A, 2017, 5(36): 18919-18932. |
33 | CATALA L, MALLAH T. Nanoparticles of Prussian blue analogs and related coordination polymers: From information storage to biomedical applications[J]. Coordination Chemistry Reviews, 2017, 346: 32-61. |
34 | LING C, CHEN J J, MIZUNO F. First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: The important role of ionic radius[J]. The Journal of Physical Chemistry C, 2013, 117(41): 21158-21165. |
35 | HAGHIGHI B, HAMIDI H, GORTON L. Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode[J]. Sensors and Actuators B: Chemical, 2010, 147(1): 270-276. |
36 | ITAYA K, SHIBAYAMA K, AKAHOSHI H, et al. Prussian-blue-modified electrodes: An application for a stable electrochromic display device[J]. Journal of Applied Physics, 1982, 53(1): 804-805. |
37 | STILWELL D E, PARK K H, MILES M H. Electrochemical studies of the factors influencing the cycle stability of Prussian blue films[J]. Journal of Applied Electrochemistry, 1992, 22(4): 325-331. |
38 | KEGGIN J F, MILES F D. Structures and formulæ of the Prussian blues and related compounds[J]. Nature, 1936, 137(3466): 577-578. |
39 | WIDMANN A, KAHLERT H, PETROVIC-PRELEVIC I, et al. Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron hexacyanoferrates/hexacyanocobaltates[J]. Inorganic Chemistry, 2002, 41(22): 5706-5715. |
40 | LU Y H, WANG L, CHENG J G, et al. Prussian blue: A new framework of electrode materials for sodium batteries[J]. Chemical Communications (Cambridge, England), 2012, 48(52): 6544-6546. |
41 | WANG B, HAN Y, WANG X, et al. Prussian blue analogs for rechargeable batteries[J]. iScience, 2018, 3: 110-133. |
42 | SUN H L, SHI H, ZHAO F, et al. Shape-dependent magnetic properties of low-dimensional nanoscale Prussian blue (PB) analogue SmFe(CN)6.4H2O[J]. Chemical Communications, 2005(34): 4339-4341. |
43 | JOHANSSON A, WIDENKVIST E, LU J, et al. Fabrication of high-aspect-ratio Prussian blue nanotubes using a porous alumina template[J]. Nano Letters, 2005, 5(8): 1603-1606. |
44 | ZAKARIA M B, HU M, PRAMANIK M, et al. Synthesis of nanoporous Ni-co mixed oxides by thermal decomposition of metal-cyanide coordination polymers[J]. Chemistry, 2015, 10(7): 1541-1545. |
45 | WU S, SHEN X, ZHOU H, et al. Morphological synthesis of Prussian blue analogue Zn3[Fe(CN)6]2⋅xH2O micro-/nanocrystals and their excellent adsorption performance toward methylene blue[J]. Journal of Colloid and Interface Science, 2016, 464: 191-197. |
46 | WU X L, CAO M H, HU C W, et al. Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor[J]. Crystal Growth & Design, 2006, 6(1): 26-28. |
47 | CAO M H, WU X L, HE X Y, et al. Shape-controlled synthesis of Prussian blue analogue Co3[Co(CN)6]2 nanocrystals[J]. Chemical Communications, 2005, (17): 2241-2243. |
48 | WU X Y, JIAN Z L, LI Z F, et al. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries[J]. Electrochemistry Communications, 2017, 77: 54-57. |
49 | HU M, ISHIHARA S, ARIGA K, et al. Kinetically controlled crystallization for synthesis of monodispersed coordination polymer nanocubes and their self-assembly to periodic arrangements[J]. Chemistry–A European Journal, 2013, 19(6): 1882-1885. |
50 | XUE Q, LI L, HUANG Y X, et al. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22339-22345. |
51 | JIANG L W, LU Y X, ZHAO C L, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019, 4(6): 495-503. |
52 | JIANG X, ZHANG T R, YANG L Q, et al. A Fe/Mn-based Prussian blue analogue as a K-rich cathode material for potassium-ion batteries[J]. ChemElectroChem, 2017, 4(9): 2237-2242. |
53 | ZHANG L, WU H B, MADHAVI S, et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties[J]. Journal of the American Chemical Society, 2012, 134(42): 17388-17391. |
54 | YU H, FAN H S, YADIAN B L, et al. General approach for MOF-derived porous spinel AFe2O4 hollow structures and their superior lithium storage properties[J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26751-26757. |
55 | SHAO J X, FENG J H, ZHOU H, et al. Graphene aerogel encapsulated Fe-Co oxide nanocubes derived from Prussian blue analogue as integrated anode with enhanced Li-ion storage properties[J]. Applied Surface Science, 2019, 471: 745-752. |
56 | LIU Y J, WANG W Q, CHEN Q D, et al. Resorcinol-formaldehyde resin-coated Prussian blue core-shell spheres and their derived unique yolk-shell FeS2@C spheres for lithium-ion batteries[J]. Inorganic Chemistry, 2019, 58(2): 1330-1338. |
57 | FAN H S, YU Ho ZHANG Y F, et al. 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core-shell nanorods for advanced sodium ion batteries[J]. Energy Storage Materials, 2018, 10: 48-55. |
58 | XU X, LIANG H F, TANG G S, et al. Accelerating the water splitting kinetics of CoP microcubes anchored on a graphene electrocatalyst by Mn incorporation[J]. Nanoscale Advances, 2019, 1(1): 177-183. |
59 | YANG Y X, LI B L, ZHANG Q, et al. Prussian blue analogues-derived CoFe-B nanocubes with increased specific surface area and modulated electronic structure as enhanced oxygen evolution electrocatalysts[J]. Energy Technology, 2021, 9(1): doi: 10.1002/ente.202000178. |
60 | LI Y W, HU J T, YANG K, et al. Synthetic control of Prussian blue derived nano-materials for energy storage and conversion application[J]. Materials Today Energy, 2019, 14: doi: 10.1016/j.mtener.2019.07.003. |
61 | ZAKARIA M B. Nanostructuring of nanoporous iron carbide spheres via thermal degradation of triple-shelled Prussian blue hollow spheres for oxygen reduction reaction[J]. RSC Advances, 2016, 6(13): 10341-10351. |
62 | XUE J H, ZHAO L, DOU Z Y, et al. Nitrogen-doped 3D porous carbons with iron carbide nanoparticles encapsulated in graphitic layers derived from functionalized MOF as an efficient noble-metal-free oxygen reduction electrocatalysts in both acidic and alkaline media[J]. RSC Advances, 2016, 6(112): 110820-110830. |
63 | BARMAN B K, NANDA K K. Prussian blue as a single precursor for synthesis of Fe/Fe3C encapsulated N-doped graphitic nanostructures as bi-functional catalysts[J]. Green Chemistry, 2016, 18(2): 427-432. |
64 | YU X Y, YU L, WU H B, et al. Formation of nickel sulfide nanoframes from metal-organic frameworks with enhanced pseudocapacitive and electrocatalytic properties[J]. Angewandte Chemie, 2015, 54(18): 5331-5335. |
65 | EFTEKHARI A. Potassium secondary cell based on Prussian blue cathode[J]. Journal of Power Sources, 2004, 126(1/2): 221-228. |
66 | CHONG S K, CHEN Y Z, ZHENG Y, et al. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(43): 22465-22471. |
67 | SU D W, MCDONAGH A, QIAO S Z, et al. High-capacity aqueous potassium-ion batteries for large-scale energy storage[J]. Advanced Materials, 2017, 29(1): doi: 10.1002/adma.201604007. |
68 | SHADIKE Z, SHI D R, WANG T, et al. Long life and high-rate Berlin green FeFe(CN)6 cathode material for a non-aqueous potassium-ion battery[J]. Journal of Materials Chemistry A, 2017, 5(14): 6393-6398. |
69 | LIAO J Y, HU Q, YU Y T, et al. A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte[J].Journal of Materials Chemistry A, 2017, 5(36): 19017-19024. |
70 | BIE X F, KUBOTA K, HOSAKA T, et al. A novel K-ion battery: Hexacyanoferrate(II)/graphite cell[J]. Journal of Materials Chemistry A, 2017, 5(9): 4325-4330. |
71 | HE G, NAZAR L F. Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries[J]. ACS Energy Letters, 2017, 2(5): 1122-1127. |
72 | PADIGI P, THIEBES J, SWAN M, et al. Prussian green: A high rate capacity cathode for potassium ion batteries[J]. Electrochimica Acta, 2015, 166: 32-39. |
73 | NOSSOL E, SOUZA V H R, ZARBIN A J. Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery[J]. Journal of Colloid and Interface Science, 2016, 478: 107-116. |
74 | PEI Y, MU C, LI H, et al. Low-cost K4Fe(CN)6 as a high-voltage cathode for potassium-ion batteries[J]. ChemSusChem, 2018, 11(8): 1285-1289. |
75 | XUE L G, LI Y T, GAO H C, et al. Low-cost high-energy potassium cathode[J]. Journal of the American Chemical Society, 2017, 139(6): 2164-2167. |
76 | SHANG Y, LI X X, SONG J J, et al. Unconventional Mn vacancies in Mn-Fe Prussian blue analogs: Suppressing Jahn-Teller distortion for ultrastable sodium storage[J]. Chem, 2020, 6(7): 1804-1818. |
77 | WESSELLS C D, PEDDADA S V, HUGGINS R A, et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Letters, 2011, 11(12): 5421-5425. |
78 | WESSELLS C D, HUGGINS R A, CUI Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power[J]. Nature Communications, 2011, 2: doi: 10.1038/ncomms1563. |
79 | PASTA M, WESSELLS C D, HUGGINS R A, et al. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage[J]. Nature Communications, 2012, 3: doi: 10.1038/ncomms2139. |
80 | WU X Y, SUN M Y, GUO S M, et al. Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries[J]. ChemNanoMat, 2015, 1(3): 188-193. |
81 | GHASEMI S, HOSSEINI S R, ASEN P. Preparation of graphene/nickel-iron hexacyanoferrate coordination polymer nanocomposite for electrochemical energy storage[J]. Electrochimica Acta, 2015, 160: 337-346. |
82 | NIE P, SHEN L F, LUO H F, et al. Prussian blue analogues: A new class of anode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(16): 5852-5857. |
83 | DENG L, YANG Z, TAN L, et al. Investigation of the Prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries[J]. Advanced Materials, 2018, 30(31): doi: 10.1002/adma.201802510. |
84 | ZHANG L, WU H B, LOU X W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity[J]. Journal of the American Chemical Society, 2013, 135(29): 10664-10672. |
85 | FANG Y J, YU X Y, LOU X W. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries[J]. Advanced Materials, 2018, 30(21): doi: 10.1002/adma.201706668. |
86 | XU Y, ZHANG C L, ZHOU M, et al. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries[J]. Nature Communications, 2018, 9(1): doi: 10.1038/s41467-018-04190-z. |
87 | WANG S B, GUAN B Y, LOU X W. Rationally designed hierarchical N-doped carbon@NiCo2O4 double-shelled nanoboxes for enhanced visible light CO2 reduction[J]. Energy & Environmental Science, 2018, 11(2): 306-310. |
88 | YANG K W, GUO Q B, LI H L, et al. Highly efficient sol-gel synthesis for ZnS@N, S Co-doped carbon nanosheets with embedded heterostructure for sodium ion batteries[J]. Journal of Power Sources, 2018, 402: 340-344. |
89 | CHEN X X, ZENG S Y, MUHEIYATI H, et al. Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a Prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries[J]. ACS Energy Letters, 2019, 4(7): 1496-1504. |
90 | LUO Y S, TAO M L, DENG J H, et al. Nanocubes composed of FeS2@C nanoparticles as advanced anode materials for K-ion storage[J]. Inorganic Chemistry Frontiers, 2020, 7(2): 394-401. |
91 | XIE J P, ZHU Y Q, ZHUANG N, et al. Rational design of metal organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage[J]. Nanoscale, 2018, 10(36): 17092-17098. |
92 | ZHANG Z F, WU C X, CHEN Z H, et al. Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage[J]. Journal of Materials Chemistry A, 2020, 8(6): 3369-3378. |
93 | WANG J M, WANG B B, LIU X J, et al. Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries[J]. Chemical Engineering Journal, 2020, 382: doi: 10.1016/j.cej.2019.123050. |
94 | GAO H, ZHOU T F, ZHENG Y, et al. CoS quantum dot nanoclusters for high-energy potassium-ion batteries[J]. Advanced Functional Materials, 2017, 27(43): doi: 10.1002/adfm.201702634. |
95 | HONG W W, ZHANG Y, YANG L, et al. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage[J]. Nano Energy, 2019, 65: doi: 10.1016/j.nanoen.2019.104038. |
96 | ZHANG E, JIA X, WANG B, et al. Carbon dots@rGO paper as freestanding and flexible potassium-ion batteries anode[J]. Advanced Science, 2020, 7(15): doi: 10.1002/advs.202000470. |
97 | LIAN P C, DONG Y F, WU Z S, et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries[J]. Nano Energy, 2017, 40: 1-8. |
98 | DONG Y F, WU Z S, ZHENG S H, et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities[J]. ACS Nano, 2017, 11(5): 4792-4800. |
99 | ZENG C, XIE F, YANG X, et al. Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage[J]. Angewandte Chemie, 2018, 57(28): 8540-8544. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[3] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[4] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[5] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[6] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[7] | 汪红辉, 吴泽钦, 储德韧. 轻度过放模式下钛酸锂电池性能及热安全性[J]. 储能科学与技术, 2022, 11(5): 1305-1313. |
[8] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
[9] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[10] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
[11] | 岑官骏, 朱璟, 乔荣涵, 申晓宇, 季洪祥, 田孟羽, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.12.1—2022.1.31)[J]. 储能科学与技术, 2022, 11(3): 1077-1092. |
[12] | 任重民, 王斌, 陈帅帅, 李华, 陈珍莲, 王德宇. 层状正极材料力学劣化及改善措施[J]. 储能科学与技术, 2022, 11(3): 948-956. |
[13] | 吴渺, 赵贵青, 仇中柱, 王保峰. 一种新型水系锌离子电池正极材料NiCo2O4 的制备和电化学性能[J]. 储能科学与技术, 2022, 11(3): 1019-1025. |
[14] | 田孟羽, 朱璟, 岑官骏, 乔荣涵, 申晓宇, 季洪祥, 田丰, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2021.10.1—2021.11.30)[J]. 储能科学与技术, 2022, 11(1): 297-312. |
[15] | 李鹏辉, 吴彩文, 任建鹏, 吴文娟. 木质素作为锂离子电池电极材料的研究进展[J]. 储能科学与技术, 2022, 11(1): 66-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||