1 |
GAO W, ZHANG X, ZHENG X, et al. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: A closed-loop process[J]. Environmental Science & Technology, 2017, 51(3): 1662-1669.
|
2 |
SHRIVASTAVA P, SOON T K, IDRIS M Y I B, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 113: doi: 10.1016/j.rser.2019.06.040.
|
3 |
CHEMALI E, PREINDL M, MALYSZ P, et al. Electrochemical and electrostatic energy storage and management systems for electric drive vehicles: State-of-the-art review and future trends[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2016, 4(3): 1117-1134.
|
4 |
李超然, 肖飞, 樊亚翔, 等. 基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法[J]. 电工技术学报, 2020, 35(9): 2051-2062.
|
|
LI C R, XIAO F, FAN Y X, et al. A hybrid approach to lithium-ion battery SOC estimation based on recurrent neural network with gated recurrent unit and Huber-M robust Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2051-2062.
|
5 |
丁镇涛, 邓涛, 李志飞, 等. 基于安时积分和无迹卡尔曼滤波的锂电池SOC估算方法研究[J]. 中国机械工程, 2020, 31(15): 1823-1830.
|
|
DING Z T, DENG T, LI Z F, et al. SOC estimation of lithium-ion battery based on ampere hour integral and unscented Kalman filter[J]. China Mechanical Engineering, 2020, 31(15): 1823-1830.
|
6 |
LIN C, YU Q Q, XIONG R, et al. A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries[J]. Applied Energy, 2017, 205: 892-902.
|
7 |
SKOOG S, DAVID S. Parameterization of linear equivalent circuit models over wide temperature and SOC spans for automotive lithium-ion cells using electrochemical impedance spectroscopy[J]. Journal of Energy Storage, 2017, 14: 39-48.
|
8 |
RAMADAN H S, BECHERIF M, CLAUDE F. Extended Kalman filter for accurate state of charge estimation of lithium-based batteries: A comparative analysis[J]. International Journal of Hydrogen Energy, 2017, 42(48): 29033-29046.
|
9 |
张远进, 吴华伟, 叶从进. 基于AUKF-BP神经网络的锂电池SOC估算[J]. 储能科学与技术, 2021, 10(1): 237-241.
|
|
ZHANG Y J, WU H W, YE C J. Estimation of the SOC of a battery based on the AUKF-BP algorithm[J]. Energy Storage Science and Technology, 2021, 10(1): 237-241.
|
10 |
BACCOUCHE I, MANAI B, AMARA N E B. SOC estimation of LFP battery based on EKF observer and a full polynomial parameters-model[C]//2020 IEEE 91st Vehicular Technology Conference, 2020.
|
11 |
YE M, GUO H, XIONG R, et al. A double-scale and adaptive particle filter-based online parameter and state of charge estimation method for lithium-ion batteries[J]. Energy, 2018, 144: 789-799.
|
12 |
NING B, XU J, CAO B G, et al. A sliding mode observer SOC estimation method based on parameter adaptive battery model[J]. Energy Procedia, 2016, 88: 619-626.
|
13 |
成文晶, 潘庭龙. 基于分布估计算法LSSVM的锂电池SOC预测[J]. 储能科学与技术, 2020, 9(6): 1948-1953.
|
|
CHENG W J, PAN T L. Prediction for SOC of lithium-ion batteries by estimating the distribution algorithm with LSSVM[J]. Energy Storage Science and Technology, 2020, 9(6): 1948-1953.
|
14 |
GUO Y F, ZHAO Z S, HUANG L M. SOC estimation of lithium battery based on improved BP neural network[J]. Energy Procedia, 2017, 105: 4153-4158.
|
15 |
CHEMALI E, KOLLMEYER P J, PREINDL M, et al. Long short-term memory-networks for accurate state of charge estimation of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2017, 65(8): 6730-6739.
|
16 |
CHEN C, XIONG R, YANG R X, et al. State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter[J]. Journal of Cleaner Production, 2019, 234: 1153-1164.
|
17 |
ELMAN J L. Finding structure in time[J]. Cognitive Science, 1990, 14(2): 179-211.
|
18 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
|
19 |
XU C Y, SHEN J Z, DU X, et al. An intrusion detection system using a deep neural network with gated recurrent units[J]. IEEE Access, 2018, 6: 48697-48707.
|
20 |
ARKHIPENKO K, KOZLOV I, TROFIMOVICH J, et al. Comparison of neural network architectures for sentiment analysis of Russian tweets[C]//Computational Linguistics and Intellectual Technologies: Proceedings of the International Conference Dialogue, 2016.
|
21 |
GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J]. Neural Networks, 2005, 18(5/6): 602-610.
|
22 |
LIU F G, ZHENG J Z, ZHENG L L, et al. Combining attention-based bidirectional gated recurrent neural network and two-dimensional convolutional neural network for document-level sentiment classification[J]. Neurocomputing, 2020, 371: 39-50.
|
23 |
CHEMALI E, KOLLMEYER P J, PREINDL M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[J]. Journal of Power Sources, 2018, 400: 242-255.
|
24 |
LI C R, XIAO F, FAN Y X. An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit[J]. Energies, 2019, 12(9): doi: 10.3390/en12091592.
|