1 |
TANG W, ZHU Y S, HOU Y Y, et al. Aqueous rechargeable lithium batteries as an energy storage system of superfast charging[J]. Energy & Environmental Science, 2013, 6(7): 2093-2104.
|
2 |
LEE A, VÖRÖS M, DOSE W M, et al. Photo-accelerated fast charging of lithium-ion batteries[J]. Nature Communications, 2019, 10(1): 1-7.
|
3 |
周安行, 蒋礼威, 岳金明, 等. Water-in-salt锂离子电解液研究进展[J]. 储能科学与技术, 2018, 7(6): 972-986.ZHOU A X, JIANG L W, YUE J M, et al. Research progress on lithium based Water-in-salt electrolytes[J]. Energy Storage Science and Technology, 2018, 7(6): 972-986.
|
4 |
XIE J, LIANG Z J, LU Y C. Molecular crowding electrolytes for high-voltage aqueous batteries[J]. Nature Materials, 2020, 19(9): 1006-1011.
|
5 |
TAO H S, DU L S, CHENG Y Y, et al. Cycling behavior of aqueous energy storage based on LiMn2O4 and activated carbon with different cathode current collectors[J]. Nanoscience and Nanotechnology Letters, 2014, 6(1): 44-50.
|
6 |
GAO W L, KRINS N, LABERTY-ROBERT C, et al. Scrutiny of the LiCoO2 composite electrode/electrolyte interface by advanced electrogravimetry and implications for aqueous Li-ion batteries[J]. The Journal of Physical Chemistry C, 2021, 125(7): 3859-3867.
|
7 |
GUO Z W, CHEN L, WANG Y G, et al. Aqueous lithium-ion batteries using polyimide-activated carbon composites anode and spinel LiMn2O4 cathode[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1503-1508.
|
8 |
KIM J S, KIM K, CHO W, et al. A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries[J]. Nano Letters, 2012, 12(12): 6358-6365.
|
9 |
WANG Y H, CHEN L, WANG Y G, et al. Cycling stability of spinel LiMn2O4 with different particle sizes in aqueous electrolyte[J]. Electrochimica Acta, 2015, 173: 178-183.
|
10 |
TRON A, PARK Y D, MUN J Y. AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability[J]. Journal of Power Sources, 2016, 325: 360-364.
|
11 |
GU H Y, WANG G J, ZHU C C, et al. Correlating cycle performance improvement and structural alleviation in LiMn2-xMxO4 spinel cathode materials: A systematic study on the effects of metal-ion doping[J]. Electrochimica Acta, 2019, 298: 806-817.
|
12 |
ZHAO J Q, WANG Y. Atomic layer deposition of epitaxial ZrO2 coating on LiMn2O4 nanoparticles for high-rate lithium ion batteries at elevated temperature[J]. Nano Energy, 2013, 2(5): 882-889.
|
13 |
PARK K, PARK J H, HONG S G, et al. Induced AlF3 segregation for the generation of reciprocal Al2O3 and LiF coating layer on self-generated LiMn2O4 surface of over-lithiated oxide based Li-ion battery[J]. Electrochimica Acta, 2016, 222: 830-837.
|
14 |
GUO J, CHEN Y, XU C, et al. Enhanced electrochemical performance of LiMn2O4 by SiO2 modifying via electrostatic attraction forces method[J]. Ionics, 2019, 25(7): 2977-2985.
|
15 |
CHEN L N, LI D P, ZHENG X W, et al. Integrated nanocomposite of LiMn2O4/graphene/carbon nanotubes with pseudocapacitive properties as superior cathode for aqueous hybrid capacitors[J]. Journal of Electroanalytical Chemistry, 2019, 842: 74-81.
|
16 |
DU Y H, WANG X Y, MAN J Z, et al. A novel organic-inorganic hybrid V2O5@ polyaniline as high-performance cathode for aqueous zinc-ion batteries[J]. Materials Letters, 2020, 272: doi: 1016/j. matlet. 2020. 127813.
|
17 |
TANG W, LIU L L, TIAN S, et al. LiMn2O4 nanorods as a super-fast cathode material for aqueous rechargeable lithium batteries[J]. Electrochemistry Communications, 2011, 13(11): 1159-1162.
|
18 |
TANG W, HOU Y Y, WANG F X, et al. LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries[J]. Nano Letters, 2013, 13(5): 2036-2040.
|
19 |
TANG W, TIAN S, LIU L L, et al. Nanochain LiMn2O4 as ultra-fast cathode material for aqueous rechargeable lithium batteries[J]. Electrochemistry Communications, 2011, 13(2): 205-208.
|
20 |
ZHAO H Y, NIE Y F, LI Y F, et al. Low-cost and eco-friendly synthesis of octahedral LiMn2O4 cathode material with excellent electrochemical performance[J]. Ceramics International, 2019, 45(14): 17183-17191.
|
21 |
TABUCHI M, KITTA M, SHIBUYA H, et al. Structural analysis during activation and cycling for Fe- and Ni-substituted Li2MnO3 positive electrode material[J]. Electrochimica Acta, 2019, 303: 9-20.
|
22 |
YU Y, XIANG M W, GUO J M, et al. Enhancing high-rate and elevated-temperature properties of Ni-Mg co-doped LiMn2O4 cathodes for Li-ion batteries[J]. Journal of colloid and interface science, 2019, 555: 64-71.
|
23 |
LARHRIB B, NIKIFORIDIS G, ANOUTI M. Safe and efficient phosphonium ionic liquid based electrolyte for high-potential LiMn2O4 and LiNi0.8Co0.15Al0.05O2 cathodes for Li-ion batteries[J]. Electrochimica Acta, 2021, 371: doi: 10.1016/j.electacta.2021.137841.
|
24 |
PIAO J Y, DUAN S Y, LIN X J, et al. Surface Zn doped LiMn2O4 for an improved high temperature performance[J]. Chemical Communications, 2018, 54(42): 5326-5329.
|
25 |
LIU H Q, TIAN R Y, JIANG Y, et al. On the drastically improved performance of Fe-doped LiMn2O4 nanoparticles prepared by a facile solution-gelation route[J]. Electrochimica Acta, 2015, 180: 138-146.
|
26 |
MICHALSKA M, ZIÓŁKOWSKA D, JASIŃSKI J, et al. Improved electrochemical performance of LiMn2O4 cathode material by Ce doping[J]. Electrochimica Acta, 2018, 276: 37-46.
|
27 |
BHUVANESWARI S, VARADARAJU U, GOPALAN R, et al. Structural stability and superior electrochemical performance of Sc-doped LiMn2O4 spinel as cathode for lithium ion batteries[J]. Electrochimica Acta, 2019, 301: 342-351.
|
28 |
TAN X H, GUO L M, JIANG Y, et al. High performance LiMn1.9Al0.1O4 porous microspheres rapidly self-assembled through an acetylene-black-assisted solid-state approach[J]. ChemElectroChem, 2019, 6(3): 668-675.
|
29 |
GUO D L, LI B, CHANG Z R, et al. Facile synthesis of LiAl0.1Mn1.9O4 as cathode material for lithium ion batteries: towards rate and cycling capabilities at an elevated temperature[J]. Electrochimica Acta, 2014, 134: 338-346.
|
30 |
CAI Z F, MA Y Z, HUANG X N, et al. High electrochemical stability Al-doped spinel LiMn2O4 cathode material for Li-ion batteries[J]. Journal of Energy Storage, 2020, 27: doi: 10.1016/j.est.2019.101036.
|
31 |
LIU T C, DAI A, LU J, et al. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery[J]. Nature Communications, 2019, 10(1): 1-11.
|
32 |
DING Y L, XIE J, CAO G S, et al. Enhanced elevated-temperature performance of Al-doped single-crystalline LiMn2O4 nanotubes as cathodes for lithium ion batteries[J]. The Journal of Physical Chemistry C, 2011, 115(19): 9821-9825.
|
33 |
LU Z P, LU X J, DING J J, et al. Enhanced electrochemical performance of LiMn2O4 by constructing a stable Mn2+-rich interface[J]. Applied Surface Science, 2017, 426: 19-28.
|
34 |
BANERJEE A, SHILINA Y, ZIV B, et al. On the oxidation state of manganese ions in Li-ion battery electrolyte solutions[J]. Journal of the American Chemical Society, 2017, 139(5): 1738-1741.
|
35 |
DING Y L, XIE J, CAO G S, et al. Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries[J]. Advanced Functional Materials, 2011, 21(2): 348-355.
|