储能科学与技术 ›› 2021, Vol. 10 ›› Issue (5): 1631-1642.doi: 10.19799/j.cnki.2095-4239.2021.0237
于苏杭1,2(), 郭文勇1,2(), 滕玉平1,2, 桑文举1,2, 蔡洋1,2, 田晨雨1,2
收稿日期:
2021-05-31
修回日期:
2021-06-22
出版日期:
2021-09-05
发布日期:
2021-09-08
作者简介:
于苏杭(1997—),男,硕士研究生,研究方向为高温超导飞轮储能控制系统,E-mail:基金资助:
Suhang YU1,2(), Wenyong GUO1,2(), Yuping TENG1,2, Wenju SANG1,2, Yang CAI1,2, Chenyu TIAN1,2
Received:
2021-05-31
Revised:
2021-06-22
Online:
2021-09-05
Published:
2021-09-08
摘要:
飞轮储能具有高功率密度、高效率和低损耗的特点,在不间断电源和电网调频等领域有广阔的应用前景。飞轮储能轴承起到支撑飞轮重量、降低摩擦阻力的作用,是决定飞轮储能量、充放电效率和使用寿命的关键。结构和控制是飞轮轴承的两个核心关键技术。本文分析了应用于飞轮储能的机械轴承、电磁轴承、高温超导磁悬浮轴承以及混合轴承的结构,并总结了不同轴承飞轮储能的损耗、转速、储能量和承载力等性能参数,指出混合磁轴承性能最优,可以降低飞轮的损耗和提高飞轮的转速。另外归纳了目前应用于电磁轴承系统的控制方法,介绍了PID控制、滑模控制、模型预测控制和神经网络控制和解耦控制在电磁轴承控制方面的应用,并进一步分析了未来飞轮磁悬浮轴承控制技术的发展方向。对各种控制方法的比较分析结果表明:在飞轮转子线性工作范围内PID控制方法能保持系统稳定;在飞轮转子非线性工作区域,滑模控制、模型预测控制和神经网络控制效果更优;而解耦控制进一步提高了飞轮在高转速下的控制精度。本文可为开展飞轮储能轴承结构和控制方法的研究提供参考。
中图分类号:
于苏杭, 郭文勇, 滕玉平, 桑文举, 蔡洋, 田晨雨. 飞轮储能轴承结构和控制策略研究综述[J]. 储能科学与技术, 2021, 10(5): 1631-1642.
Suhang YU, Wenyong GUO, Yuping TENG, Wenju SANG, Yang CAI, Chenyu TIAN. A review of the structures and control strategies for flywheel bearings[J]. Energy Storage Science and Technology, 2021, 10(5): 1631-1642.
1 | 袁绍军, 白雪松, 潘立巍, 等. 微电网用飞轮储能支承系统多目标控制[J]. 电工技术学报, 2015, 30(S1): 406-411. |
YUAN S J, BAI X S, PAN L W, et al. A multi-objective control algorithm for micro grid with flywheel energy storage supporting system[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 406-411. | |
2 | GANESAN S, SUBRAMANIAM U, GHODKE A A, et al. Investigation on sizing of voltage source for a battery energy storage system in microgrid with renewable energy sources[J]. IEEE Access, 2020, 8: 188861-188874. |
3 | 邓自刚, 王家素, 王素玉, 等. 高温超导磁悬浮轴承研发现状[J]. 电工技术学报, 2009, 24(9): 1-8. |
DENG Z G, WANG J S, WANG S Y, et al. Research and development status of high temperature superconducting magnetic bearings[J]. Transactions of China Electrotechnical Society, 2009, 24(9): 1-8. | |
4 | PULLEN K R. The status and future of flywheel energy storage[J]. Joule, 2019, 3(6): 1394-1399. |
5 | FANG S H, LYU Z, CHAO G. Energy density improvement for superconducting flywheel using structure optimization[C]//2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China. IEEE, 2020: 1-2. |
6 | 王江波, 赵国亮, 蒋晓春, 等. 飞轮储能技术在电网中的应用综述[J]. 电力电子技术, 2013, 47(7): 28-30. |
WANG J B, ZHAO G L, JIANG X C, et al. Overview on application of flywheel energy storage technology in power grid[J]. Power Electronics, 2013, 47(7): 28-30. | |
7 | SOTELO G G, DE ANDRADE R, FERREIRA A C. Magnetic bearing sets for a flywheel system[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2150-2153. |
8 | 张维煜, 朱熀秋. 飞轮储能关键技术及其发展现状[J]. 电工技术学报, 2011, 26(7): 141-146. |
ZHANG W Y, ZHU H Q. Key technologies and development status of flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 141-146. | |
9 | TOORN S W, SPRONCK J W, OSTAYEN R A, et al. Design considerations for ferrofluid pressure bearing pads[J]. Results in Engineering, 2021, 10: doi: 10.1016/j.rineng.2021.100200. |
10 | 戴兴建, 邓占峰, 刘刚, 等. 大容量先进飞轮储能电源技术发展状况[J]. 电工技术学报, 2011, 26(7): 133-140. |
DAI X J, DENG Z F, LIU G, et al. Review on advanced flywheel energy storage system with large scale[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 133-140. | |
11 | AWADALLAH M A, VENKATESH B. Energy storage in flywheels: An overview[J]. Canadian Journal of Electrical and Computer Engineering, 2015, 38(2): 183-193. |
12 | LI X J, ANVARI B, PALAZZOLO A, et al. A utility-scale flywheel energy storage system with a shaftless, hubless, high-strength steel rotor[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6667-6675. |
13 | REN X, FENG M, CHEN S. Design and analysis of a novel three pole magnetic bearing with secondary air-gap[C]//2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), IEEE, 2020. |
14 | 冯奕, 林鹤云, 颜建虎, 等. 基于机械轴承飞轮储能系统损耗的构成分析[J]. 东南大学学报(自然科学版), 2013, 43(1): 71-75. |
FENG Y, LIN H Y, YAN J H, et al. Loss component analysis of flywheel energy storage system with mechanical bearings[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(1): 71-75. | |
15 | 董志勇, 戴兴建, 李奕良. 采用螺旋槽锥轴承的飞轮储能系统空载损耗研究[J]. 机械科学与技术, 2006, 25(12): 1434-1437, 1475. |
DONG Z Y, DAI X J, LI Y L. Idling loss of flywheel energy storage system supported by spiral groove cone bearings[J]. Mechanical Science and Technology, 2006, 25(12): 1434-1437, 1475. | |
16 | DAI X J, ZHANG K, TANG C L. Friction and wear of pivot jewel bearing in oil-bath lubrication for high rotational speed application[J]. Wear, 2013, 302(1/2): 1506-1513. |
17 | JIANG S Y, WANG H C, WEN S B. Flywheel energy storage system with a permanent magnet bearing and a pair of hybrid ceramic ball bearings[J]. Journal of Mechanical Science and Technology, 2014, 28(12): 5043-5053. |
18 | 戴兴建, 于涵, 李奕良. 飞轮储能系统充放电效率实验研究[J]. 电工技术学报, 2009, 24(3): 20-24. |
DAI X J, YU H, LI Y L. Efficient test on the charging and discharging of the flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2009, 24(3): 20-24. | |
19 | QIU Y J, DING H Q. Flywheel energy storage system with permanent magnetic bearing and spiral groove bearing[C]//2017 8th International Conference on Mechanical and Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa. IEEE, 2017: 116-120. |
20 | QIU Y J, JIANG S Y. Suppression of low-frequency vibration for rotor-bearing system of flywheel energy storage system[J]. Mechanical Systems and Signal Processing, 2019, 121: 496-508. |
21 | SATO D, ITOH J I, WATANABE T, et al. Development of magnetic coupling with variable thrust structure for flywheel energy storage system in long lifetime UPS[C]//2015 IEEE International Telecommunications Energy Conference (INTELEC), Osaka, Japan. IEEE, 2015: 1-6. |
22 | SUZUKI T, MASUDA T, ITOH J I, et al. Reduction of mechanical loss of flywheel energy storage system with spherical spiral groove bearing[C]//2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS), Honolulu, HI, USA. IEEE, 2017: 355-359. |
23 | 王东, 姜豪, 苏振中, 等. 船用磁悬浮轴承关键技术与发展综述[J]. 中国电机工程学报, 2020, 40(20): 6704-6715. |
WANG D, JIANG H, SU Z Z, et al. A review on the key technologies and development of marine magnetic bearings[J]. Proceedings of the CSEE, 2020, 40(20): 6704-6715. | |
24 | DAI X, ZHANG X, JIN X. The partial and full rubbing of a flywheel rotor-bearing-stop system[J]. International Journal of Mechanical Sciences, 2001, 43(2): 505-519. |
25 | CHENG X, DENG S, CHENG B X, et al. Design and implementation of a fault-tolerant magnetic bearing control system combined with a novel fault-diagnosis of actuators[J]. IEEE Access, 2020, 9: 2454-2465. |
26 | MATTHIAS P, PETER B, HANS-JOACHIM K, et al. Adaptive spindle damping system with active electromagnetic bearing[J]. Procedia Manufacturing, 2017, 8: 557-562. |
27 | MARKIEWICZ W D, LARBALESTIER D C, WEIJERS H W, et al. Design of a superconducting 32 T magnet with REBCO high field coils[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): doi: 10.1109/TASC.2011.2174952. |
28 | YıLDıZ A S, SIVRIOGLU S. Superconducting levitation analysis of a flywheel system using H-formulation[J]. Physica C: Superconductivity and Its Applications, 2019, 561: 64-70. |
29 | XU J M, ZHANG C P, WANG J L, et al. Experimental investigations of novel compound bearing of superconducting magnetic field and hydrodynamic fluid field[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(1): 1-7. |
30 | BAI J G, ZHANG X Z, WANG L M. A flywheel energy storage system with active magnetic bearings[J]. Energy Procedia, 2012, 16: 1124-1128. |
31 | 聂发廷. 10 kW·h飞轮储能系统的电磁轴承结构设计[D]. 哈尔滨: 哈尔滨工程大学, 2016. |
NIE F T. The structure design of electromagnetic bearing based on 10 kW·h flywheel energy storage system[D]. Harbin: Harbin Engineering University, 2016. | |
32 | SWETT D W, BLANCHE J G. Flywheel charging module for energy storage used in electromagnetic aircraft launch system[J]. 2004 12th Symposium on Electromagnetic Launch Technology, 2004: 551-554. |
33 | 刘平, 李树胜, 李光军, 等. 基于磁悬浮储能飞轮阵列的地铁直流电能循环利用系统及实验研究[J]. 储能科学与技术, 2020, 9(3): 910-917. |
LIU P, LI S S, LI G J, et al. Experimental research on DC power recycling system in the subway based on the magnetically suspended energy-storaged flywheel array[J]. Energy Storage Science and Technology, 2020, 9(3): 910-917. | |
34 | 张维煜, 朱熀秋, 袁野. 磁悬浮轴承应用发展及关键技术综述[J]. 电工技术学报, 2015, 30(12): 12-20. |
ZHANG W Y, ZHU H Q, YUAN Y. Study on key technologies and applications of magnetic bearings[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 12-20. | |
35 | 邱文祥, 李大兴, 夏革非, 等. 一种新型低成本飞轮储能用永磁偏置磁轴承[J]. 电工技术学报, 2015, 30(S1): 58-62. |
QIU W X, LI D X, XIA G F, et al. A low cost permanent magnet biased bearing used in flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 58-62. | |
36 | XU Y L, DUN Y Q, WANG X H, et al. Analysis of hybrid magnetic bearing with a permanent magnet in the rotor by FEM[J]. IEEE Transactions on Magnetics, 2006, 42(4): 1363-1366. |
37 | ZHU R Z, XU W, YE C Y, et al. Novel heteropolar radial hybrid magnetic bearing with low rotor core loss[J]. IEEE Transactions on Magnetics, 2017, 53(11): 1-5. |
38 | LE Q Y, ZHU W G. Electromagnetic performance analysis on the novel radial and axial hybrid magnetic bearing[C]//2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China. IEEE, 2020: 1-2. |
39 | BAO P, ZHANG T. Design and analysis on the novel uncoupled six-pole three-degree-of-freedom hybrid magnetic bearing[C]//2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), Tianjin, China. IEEE, 2020: 1-2. |
40 | KI T, JEONG S, HAN Y H, et al. Thermal packaging of high temperature superconductor bulk for superconducting flywheel energy storage[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): doi: 10.1109/TASC.2013.2241376. |
41 | 邓自刚, 王家素, 王素玉, 等. 高温超导飞轮储能技术发展现状[J]. 电工技术学报, 2008, 23(12): 1-10. |
DENG Z G, WANG J S, WANG S Y, et al. Status of high Tc superconducting flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 1-10. | |
42 | ARAKI S, NAGASHIMA K, SEINO H, et al. Discussions about measurement results of levitation force and its time relaxation between GdBCO bulk superconductors and superconducting magnet with a high magnetic field gradient[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 2111-2115. |
43 | WERFEL F N, FLOEGEL-DELOR U, RIEDEL T, et al. A compact HTS 5 kW·h/250 kW flywheel energy storage system[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2138-2141. |
44 | NAGAYA S, KASHIMA N, MINAMI M, et al. Study on high temperature superconducting magnetic bearing for 10 kW·h flywheel energy storage system[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 1649-1652. |
45 | ANDRADE R, FERREIRA A C, SOTELO G G, et al. Voltage sags compensation using a superconducting flywheel energy storage system[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2265-2268. |
46 | SUNG T H, LEE J S, HAN Y H, et al. 300 W·h class superconductor flywheel energy storage system with a horizontal axle[J]. Physica C: Superconductivity, 2002, 372/373/374/375/376: 1451-1456. |
47 | MITSUDA H, INOUE A, NAKAYA B, et al. Improvement of energy storage flywheel system with SMB and PMB and its performances[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 2091-2094. |
48 | MUKOYAMA S, NAKAO K, SAKAMOTO H, et al. Development of superconducting magnetic bearing for 300 kW flywheel energy storage system[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1-4. |
49 | 李万杰, 张国民, 王新文, 等. 飞轮储能系统用超导电磁混合磁悬浮轴承设计[J]. 电工技术学报, 2020, 35(S1): 10-18. |
LI W J, ZHANG G M, WANG X W, et al. Integration design of high-temperature superconducting bearing and electromagnetic thrust bearing for flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 10-18. | |
50 | XU Y L, DUN Y Q, WANG X H, et al. Analysis of hybrid magnetic bearing with a permanent magnet in the rotor by FEM[J]. IEEE Transactions on Magnetics, 2006, 42(4): 1363-1366. |
51 | SUN J J, FANG J C. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(2): 202-208. |
52 | REN X J, FENG M, REN T M. Design and optimization of a radial high-temperature superconducting magnetic bearing[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 1-5. |
53 | MUSHI S E, LIN Z L, ALLAIRE P E. Design, construction, and modeling of a flexible rotor active magnetic bearing test rig[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6): 1170-1182. |
54 | 李乃安. 主动磁悬浮轴承专家PID控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. |
LI N A. The research of expert PID control strategy in active electromagnetic bearings[D]. Harbin: Harbin Engineering University, 2017. | |
55 | 于洁, 祝长生, 余忠磊. 考虑涡流的自传感主动电磁轴承转子位置估计策略[J]. 电工技术学报, 2018, 33(9): 1946-1956. |
YU J, ZHU C S, YU Z L. Rotor position estimation strategy for self-sensing active magnetic bearing considering eddy currents[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1946-1956. | |
56 | MAO C, ZHU C S. Unbalance compensation for active magnetic bearing rotor system using a variable step size real-time iterative seeking algorithm[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5): 4177-4186. |
57 | 鞠金涛, 朱熀秋, 许泽刚, 等. 磁轴承滑模控制研究综述[J]. 轴承, 2019(9): 56-66. |
JU J T, ZHU H Q, XU Z G, et al. Research review on sliding mode control for magnetic bearings[J]. Bearing, 2019(9): 56-66. | |
58 | 王忠博, 毛川, 祝长生. 主动电磁轴承-刚性转子系统PID控制器设计方法[J]. 中国电机工程学报, 2018, 38(20): 6154-6163. |
WANG Z B, MAO C, ZHU C S. A design method of PID controller for active magnetic bearings-rigid rotor systems[J]. Proceedings of the CSEE, 2018, 38(20): 6154-6163. | |
59 | WEI C S, SÖFFKER D. Optimization strategy for PID-controller design of AMB rotor systems[J]. IEEE Transactions on Control Systems Technology, 2016, 24(3): 788-803. |
60 | 汤继强, 隗同坤, 宁梦月, 等. 基于反馈线性化的MSCMG转子稳定控制[J]. 北京航空航天大学学报, 2020, 46(6): 1063-1072. |
TANG J Q, WEI T K, NING M Y, et al. Stable control of MSCMG rotor based on feedback linearization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1063-1072. | |
61 | 楼晓春, 吴国庆. 主动磁轴承系统的自适应滑模控制[J]. 电工技术学报, 2012, 27(1): 142-147. |
LOU X C, WU G Q. Adaptive sliding mode control for an active magnetic bearing system[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 142-147. | |
62 | LEE J H, ALLAIRE P E, TAO G, et al. Experimental study of sliding mode control for a benchmark magnetic bearing system and artificial heart pump suspension[J]. IEEE Transactions on Control Systems Technology, 2003, 11(1): 128-138. |
63 | KANDIL M S, DUBOIS M R, BAKAY L S, et al. Application of second-order sliding-mode concepts to active magnetic bearings[J]. IEEE Transactions on Industrial Electronics, 2018, 65(1): 855-864. |
64 | HUANG Y. Model predictive control of magnetic bearing[J]. Magnetic bearings—Automatic control, 2007, doi: http://researchbank.rmit.edu.au/view/rmit:9755. |
65 | MORSI A, ABBAS H S, AHMED S M, et al. Model predictive control based on linear parameter-varying models of active magnetic bearing systems[J]. IEEE Access, 2021, 9: 23633-23647. |
66 | PAPINI L, TARISCIOTTI L, COSTABEBER A, et al. Active Magnetic Bearing system design featuring a predictive current control[C]//IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy. IEEE, 2016: 3217-3222. |
67 | QI W, LIU J F, CHEN X Z, et al. Supervisory predictive control of standalone wind/solar energy generation systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(1): 199-207. |
68 | 赵宏凯, 蒋科坚. 基于RBF神经网络的电磁轴承基础激励主动控制研究[J]. 机电工程, 2020, 37(12): 1425-1431. |
ZHAO H K, JIANG K J. Active control for the base motion of active magnetic bearings based on RBF neural network[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(12): 1425-1431. | |
69 | LIU Q, LI H, WANG W, et al. Analysis and experiment of 5-DOF decoupled spherical vernier-gimballing magnetically suspended flywheel (VGMSFW)[J]. IEEE Access, 2020, 8: 111707-111717. |
70 | JENG J T, LEE T T. Control of magnetic bearing systems via the Chebyshev polynomial-based unified model (CPBUM) neural network[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 2000, 30(1): 85-92. |
71 | 赵皓宇, 祝长生. 电磁轴承刚性转子系统前馈解耦控制[J]. 浙江大学学报(工学版), 2018, 52(9): 1777-1787. |
ZHAO H Y, ZHU C S. Feedforward decoupling control for magnetically suspended rigid rotor system[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(9): 1777-1787. | |
72 | YI J, REN G P, ZHANG H T, et al. A model reference adaptive controller with feedforward decoupling for active magnetic bearing rotor system[C]//2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China. IEEE, 2019: 833-838. |
73 | 陈亮亮, 祝长生, 王忠博. 基于逆系统解耦的电磁轴承飞轮转子系统二自由度控制[J]. 电工技术学报, 2017, 32(23): 100-114. |
CHEN L L, ZHU C S, WANG Z B. Two-degree-of-freedom control for active magnetic bearing flywheel rotor system based on inverse system decoupling[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 100-114. | |
74 | CHENG X, CHENG B X, DENG S, et al. State-feedback decoupling control of 5-DOF magnetic bearings based on α-order inverse system[J]. Mechatronics, 2020, 68: doi: 10.1016/j.mechatronics.2020.102358. |
75 | 李冰林, 曾励, 张鹏铭, 等. 主动磁悬浮轴承的滑模自抗扰解耦控制[J/OL].电机与控制学报, 2021, http://kns.cnki.net/kcms/detail/23.1408.TM.20210329.1613.020.html. |
LI B L, ZENG L, ZHANG P M, et al. Sliding mode active disturbance rejection decoupling control for active magnetic bearings[J/OL]. Electric Machines and Control, 2021, http://kns.cnki.net/kcms/detail/23.1408.TM.20210329.1613.020.html. | |
76 | 朱熀秋, 赵泽龙. 三自由度六极混合磁轴承线性/非线性自抗扰切换解耦控制[J]. 中国电机工程学报, 2018, 38(10): 3077-3086, 3159. |
ZHU H Q, ZHAO Z L. Decoupling control based on linear/nonlinear active disturbance rejection switching for 3-degree-of-freedom 6-pole hybrid magnetic bearing[J]. Proceedings of the CSEE, 2018, 38(10): 3077-3086, 3159. | |
77 | WANG S S, ZHU H Q, WU M Y, et al. Active disturbance rejection decoupling control for three-degree-of- freedom six-pole active magnetic bearing based on BP neural network[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(4): 1-5. |
[1] | 杨孝杰, 王海云, 蒋中川, 宋章华. 应用于飞轮储能的BLDC电机功率双向流动策略设计[J]. 储能科学与技术, 2022, 11(7): 2233-2240. |
[2] | 高峻泽, 柳亦兵, 周传迪, 何海婷, 武鑫. 飞轮用永磁悬浮轴承的磁路设计及磁力解析模型[J]. 储能科学与技术, 2022, 11(5): 1437-1445. |
[3] | 周勇, 陈香玉, 简霖, 王扶辉, 田德高, 韩传军. 游梁式抽油机飞轮储能系统设计及实验[J]. 储能科学与技术, 2022, 11(2): 593-599. |
[4] | 陈玉龙, 武鑫, 滕伟, 柳亦兵. 用于风电功率平抑的飞轮储能阵列功率协调控制策略[J]. 储能科学与技术, 2022, 11(2): 600-608. |
[5] | 戴兴建, 胡东旭, 张志来, 陈海生, 朱阳历. 高强合金钢飞轮转子材料结构分析与应用[J]. 储能科学与技术, 2021, 10(5): 1667-1673. |
[6] | 王纯一, 张剀, 徐旸. 磁轴承电感传感器无功补偿技术[J]. 储能科学与技术, 2021, 10(5): 1650-1655. |
[7] | 张兴, 阮鹏, 张柳丽, 田刚领, 祝保红. 飞轮储能装置性能测试[J]. 储能科学与技术, 2021, 10(5): 1674-1678. |
[8] | 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析[J]. 储能科学与技术, 2021, 10(5): 1679-1686. |
[9] | 李红, 储江伟, 孙术发, 李宏刚. 车载电磁耦合飞轮储能系统的特性[J]. 储能科学与技术, 2021, 10(5): 1687-1693. |
[10] | 张兴, 阮鹏, 张柳丽, 李娟, 田刚领, 胡东旭, 祝保红. 飞轮储能在华中区域火电调频中的应用分析[J]. 储能科学与技术, 2021, 10(5): 1694-1700. |
[11] | 兰晨, 李文艳. 两种变厚度空心储能飞轮的应力特性[J]. 储能科学与技术, 2021, 10(3): 1080-1087. |
[12] | 祝保红, 李光军, 李树胜, 崔亚东. 基于储能飞轮的油井发电机功率补偿与节能应用[J]. 储能科学与技术, 2021, 10(3): 1088-1094. |
[13] | 李红, 储江伟, 孙术发, 刘贺. 车用飞轮混合动力系统的应用进展[J]. 储能科学与技术, 2021, 10(2): 534-543. |
[14] | 李汶灿, 吕静亮, 姜新建, 张信真. 基于多模式协调的飞轮储能系统故障穿越控制方法[J]. 储能科学与技术, 2020, 9(6): 1905-1916. |
[15] | 汪军水, 戴兴建, 徐旸, 皮振宏. 高速储能飞轮转子芯轴-轮毂连接结构优化设计[J]. 储能科学与技术, 2020, 9(6): 1806-1811. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||