储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 2244-2251.doi: 10.19799/j.cnki.2095-4239.2021.0151

• 储能系统与工程 • 上一篇    下一篇

基于概率潮流的光伏电站中储能系统的优化配置方法

张德隆(), MUBAARAK Saif, 蒋思宇, 王龙泽, 刘金鑫, 陈永聪, 李美成()   

  1. 华北电力大学新能源学院,北京 102206
  • 收稿日期:2021-04-12 修回日期:2021-04-16 出版日期:2021-11-05 发布日期:2021-11-03
  • 作者简介:张德隆(1988—),男,博士,博士后,研究方向为储能系统、综合能源系统的优化运行与规划,E-mail:zhangdelong@ncepu.edu.cn|李美成,教授,博士生导师,研究方向为太阳能电池、锂离子电池等新能源材料与器件,E-mail:mcli@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(71974055);国家电网公司科技项目(SGJX0000KXJS1900321);北京市科技计划项目(Z18110000511802);中央高校基本科研课题(2020FR002)

Optimal allocation method of energy storage in PV station based on probabilistic power flow

Delong ZHANG(), Saif MUBAARAK, Siyu JIANG, Longze WANG, Jinxin LIU, Yongcong CHEN, Meicheng LI()   

  1. School of New Energy, North China Electric Power University, Beijing 102206, China
  • Received:2021-04-12 Revised:2021-04-16 Online:2021-11-05 Published:2021-11-03

摘要:

高比例光伏发电接入会对电力系统的稳定性等造成不利影响,而储能则被认为是消除这些影响的有效手段之一。本文从电力系统潮流的角度,分析了光伏发电对电力系统的影响,进而分析了储能对抑制这种影响的作用。首先,介绍了电力系统中元件的概率分布模型和储能模型,以及拉丁超立方采样法及Gram-Schmidt序列正交化方法;其次,建立了多目标优化模型,模型考虑了储能系统的成本、支路潮流的越限概率和电网的网络损耗,并用遗传算法求取目标函数的最优解;最后,在IEEE24节点测试系统中进行了仿真,分析了光伏不同接入容量和接入位置对电力系统的影响,储能对电力系统的作用,得出了对应不同光伏容量的储能最优配置。

关键词: 光伏发电, 储能系统, 优化配置, 概率潮流, 遗传算法

Abstract:

Large-scale photovoltaic (PV) stations will adversely affect the stability of the power system, while energy storage is considered to be one of the effective means to eliminate these effects. In this paper, the influence of PV plants on the power system and the function of the energy storage system (ESS) are analyzed from the perspective of power flow. First, the probability distribution model of power system components, storage model, Latin hypercube sampling (LHS) method, and Gram-Schmidt orthogonal sequence method are introduced in this paper. Second, this paper establishes the multiple objective optimization models that consider the energy storage system costs, the probability of a branch remaining active beyond the limit, and network loss. The genetic algorithm is used to find the best solution to the objective function (GA). Finally, the simulation is run on the IEEE 24 bus test system, including the effects of different PV capacities and access positions, as well as the effect of ESS. In this simulation, the optimal energy storage configuration for various PV capacities is obtained.

Key words: PV power generation, energy storage system, optimal configuration, probabilistic power flow, genetic algorithm

中图分类号: