1 |
俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152.
|
|
YU H M, SHAO Z G, HOU M, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152.
|
2 |
KRISHNAN S, FAIRLIE M, ANDRES P, et al. Technological learning in the transition to a low-carbon energy system // Power to gas (H2): Alkaline electrolysis[M]. Utah: Academic Press, 2020.
|
3 |
FENG Q, YUAN X Z, LIU G Y, et al. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2017, 366: 33-55.
|
4 |
田江南, 罗扬. 风电耦合电解水制氢技术研究[J]. 电力勘测设计, 2021(2): 63-67.
|
|
TIAN J N, LUO Y. Research of wind power coupled with producing hydrogen by water electrolysis[J]. Electric Power Survey & Design, 2021(2): 63-67.
|
5 |
郭秀盈, 李先明, 许壮, 等. 可再生能源电解制氢成本分析[J]. 储能科学与技术, 2020, 9(3): 688-695.
|
|
GUO X Y, LI X M, XU Z, et al. Cost analysis of hydrogen production by electrolysis of renewable energy[J]. Energy Storage Science and Technology, 2020, 9(3): 688-695.
|
6 |
Elia Group. Wind power generation[DB/OL]. (2022-2-6)[2021-12-6]. http://www.elia.be/en/grid-data/power-generation/wind-po-wer-generation.
|
7 |
Dka Solar Centre. Northern territory solar resource[DB/OL]. (2022-2-8)[2021-12-14]. http://dkasolarcentre.com.au/ download?location=nt-solar-resource.
|
8 |
GANDÍA L M, OROZ R, URSÚA A, et al. Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions[J]. Energy & Fuels, 2007, 21(3): 1699-1706.
|
9 |
TRINKE P, HAUG P, BRAUNS J, et al. Hydrogen crossover in PEM and alkaline water electrolysis: Mechanisms, direct comparison and mitigation strategies[J]. Journal of the Electrochemical Society, 2018, 165(7): F502-F513.
|
10 |
SCHNUELLE C, WASSERMANN T, FUHRLAENDER D, et al. Dynamic hydrogen production from PV & wind direct electricity supply-Modeling and techno-economic assessment[J]. International Journal of Hydrogen Energy, 2020, 45(55): 29938-29952.
|
11 |
杨阳, 张胜中, 王红涛. 碱性电解水制氢关键材料研究进展[J]. 现代化工, 2021, 41(5): 78-82, 87.
|
|
YANG Y, ZHANG S Z, WANG H T. Research progress on key materials for alkaline water electrolysis to hydrogen[J]. Modern Chemical Industry, 2021, 41(5): 78-82, 87.
|
12 |
MAZLOOMI S K, SULAIMAN N. Influencing factors of water electrolysis electrical efficiency[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 4257-4263.
|
13 |
MAZLOOMI S K, SULAIMAN N, AHMAD S A, et al. Analysis of the frequency response of a water electrolysis cell[J]. International Journal of Electrochemical Science, 2013, 8: 3731-3739.
|
14 |
SHIMIZU N, HOTTA S, SEKIYA T, et al. A novel method of hydrogen generation by water electrolysis using an ultra-short-pulse power supply[J]. Journal of Applied Electrochemistry, 2006, 36(4): 419-423.
|
15 |
BRAUNS J, TUREK T. Alkaline water electrolysis powered by renewable energy: A review[J]. Processes, 2020, 8(2): 248.
|
16 |
DOBÓ Z, PALOTÁS Á B. Impact of the current fluctuation on the efficiency of alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5649-5656.
|
17 |
SPECKMANN F W, BINTZ S, BIRKE K P. Influence of rectifiers on the energy demand and gas quality of alkaline electrolysis systems in dynamic operation[J]. Applied Energy, 2019, 250: 855-863.
|
18 |
URSÚA A, SAN MARTÍN I, BARRIOS E L, et al. Stand-alone operation of an alkaline water electrolyser fed by wind and photovoltaic systems[J]. International Journal of Hydrogen Energy, 2013, 38(35): 14952-14967.
|
19 |
DOBÓ Z, PALOTÁS Á B. Impact of the voltage fluctuation of the power supply on the efficiency of alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2016, 41(28): 11849-11856.
|
20 |
BOWEN J R, BENTZEN J J, JORGENSEN P S, et al. RES Hydrogen: Efficient pressurised alkaline electrolysers[R/OL]. DTU Energy Conversion. [2016-07-24]. https://backend.orbit.dtu.dk/ws/files/117260640/RES_Hydrogen.pdf.
|
21 |
FANG R M, LIANG Y. Control strategy of electrolyzer in a wind-hydrogen system considering the constraints of switching times[J]. International Journal of Hydrogen Energy, 2019, 44(46): 25104-25111.
|
22 |
BERGEN A, PITT L, ROWE A, et al. Transient electrolyser response in a renewable-regenerative energy system[J]. International Journal of Hydrogen Energy, 2009, 34(1): 64-70.
|
23 |
DAVID M, OCAMPO-MARTÍNEZ C, SÁNCHEZ-PEÑA R. Advances in alkaline water electrolyzers: A review[J]. Journal of Energy Storage, 2019, 23: 392-403.
|
24 |
SUN S C, SHAO Z G, YU H M, et al. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack[J]. Journal of Power Sources, 2014, 267: 515-520.
|
25 |
JÄRVINEN L, RUUSKANEN V, KOPONEN J, et al. Implementing a power source to study the effect of power quality on the PEM water electrolyzer stack[C]// 2019 21st European Conference on Power Electronics and Applications (EPE '19 ECCE Europe), 2019. doi: 10.23919/EPE.2019.8915216.
|
26 |
BUITENDACH H P C, GOUWS R, MARTINSON C A, et al. Effect of a ripple current on the efficiency of a PEM electrolyser[J]. Results in Engineering, 2021, 10: doi:10.1016/j.rineng.2021.100216.
|
27 |
张萍俊. 质子交换膜水电解池的性能优化及动态响应的研究[D]. 大连: 大连交通大学, 2019.
|
|
ZHANG P J. Performance optimization and dynamic response of proton exchange membrane water electrolysis cell[D]. Dalian: Dalian Jiaotong University, 2019.
|
28 |
GAGO A S, BÜRKLE J, LETTENMEIER P, et al. Degradation of proton exchange membrane (PEM) electrolysis: The influence of current density[J]. ECS Transactions, 2018, 86(13): 695-700.
|
29 |
RAKOUSKY C, REIMER U, WIPPERMANN K, et al. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power[J]. Journal of Power Sources, 2017, 342: 38-47.
|
30 |
OGUMEREM G S, PISTIKOPOULOS E N. Parametric optimization and control for a smart proton exchange membrane water electrolysis (PEMWE) system[J]. Journal of Process Control, 2020, 91: 37-49.
|
31 |
纪钦洪, 徐庆虎, 于航, 等. 质子交换膜水电解制氢技术现状与展望[J]. 现代化工, 2021, 41(4): 72-76, 81.
|
|
JI Q H, XU Q H, YU H, et al. Status and trend of hydrogen production technologies through water electrolysis by proton exchange membrane[J]. Modern Chemical Industry, 2021, 41(4): 72-76, 81.
|
32 |
UNO M, TANAKA K. Pt/C catalyst degradation in proton exchange membrane fuel cells due to high-frequency potential cycling induced by switching power converters[J]. Journal of Power Sources, 2011, 196(23): 9884-9889.
|
33 |
PARACHE F, SCHNEIDER H, TURPIN C, et al. Impact of power converter current ripple on the degradation of PEM electrolyzer performances[J]. Membranes, 2022, 12(2): 109.
|
34 |
CHOI J, QU Y, HOFFMANN M R. SnO2, IrO2, Ta2O5, Bi2O3, and TiO2 nanoparticle anodes: Electrochemical oxidation coupled with the cathodic reduction of water to yield molecular H2[J]. Journal of Nanoparticle Research, 2012, 14(8): 1-12.
|
35 |
CHEREVKO S, GEIGER S, KASIAN O, et al. Oxygen evolution activity and stability of iridium in acidic media. Part 2.- Electrochemically grown hydrous iridium oxide[J]. Journal of Electroanalytical Chemistry, 2016, 774: 102-110.
|
36 |
LETTENMEIER P, WANG R, ABOUATALLAH R, et al. Durable membrane electrode assemblies for proton exchange membrane electrolyzer systems operating at high current densities[J]. Electrochimica Acta, 2016, 210: 502-511.
|
37 |
ALIA S M, STARIHA S, BORUP R L. Electrolyzer durability at low catalyst loading and with dynamic operation[J]. Journal of the Electrochemical Society, 2019, 166(15): F1164-F1172.
|
38 |
FRENSCH S H, FOUDA-ONANA F, SERRE G, et al. Influence of the operation mode on PEM water electrolysis degradation[J]. International Journal of Hydrogen Energy, 2019, 44(57): 29889-29898.
|
39 |
SCOHY M, ABBOU S, MARTIN V, et al. Probing surface oxide formation and dissolution on/of Ir single crystals via X-ray photoelectron spectroscopy and inductively coupled plasma mass spectrometry[J]. ACS Catalysis, 2019, 9(11): 9859-9869.
|
40 |
ALIA S M, RASIMICK B, NGO C, et al. Activity and durability of iridium nanoparticles in the oxygen evolution reaction[J]. Journal of the Electrochemical Society, 2016, 163(11): F3105-F3112.
|
41 |
SPÖRI C, KWAN J T H, BONAKDARPOUR A, et al. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation[J]. Angewandte Chemie (International Ed in English), 2017, 56(22): 5994-6021.
|
42 |
WEIß A, SIEBEL A, BERNT M, et al. Impact of intermittent operation on lifetime and performance of a PEM water electrolyzer[J]. Journal of the Electrochemical Society, 2019, 166(8): F487-F497.
|
43 |
WONG K H, KJEANG E. Mitigation of chemical membrane degradation in fuel cells: Understanding the effect of cell voltage and iron ion redox cycle[J]. ChemSusChem, 2015, 8(6): 1072-1082.
|
44 |
CAI X, LIN R, XU J, et al. Construction and analysis of photovoltaic directly coupled conditions in PEM electrolyzer[J]. International Journal of Hydrogen Energy, 2022, 47(10): 6494-6507.
|
45 |
谢晓峰. 质子交换膜水电解的应用技术研究[D]. 武汉: 武汉大学, 2020.
|
|
XIE X F. Studies on applied technologies of the proton exchange membrane water electrolysis[D]. Wuhan: Wuhan University, 2020.
|
46 |
毕俊, 柳小祥, 杨金梦, 等. SPE电解水用钛双极板表面氮化物涂层的制备与评价[J]. 电镀与涂饰, 2020, 39(23): 1632-1637.
|
|
BI J, LIU X X, YANG J M, et al. Preparation and evaluation of nitride coating on the surface of titanium bipolar plate for SPE water electrolysis[J]. Electroplating & Finishing, 2020, 39(23): 1632-1637.
|
47 |
FONSECA C, BARBOSA M A. Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy[J]. Corrosion Science, 2001, 43(3): 547-559.
|
48 |
GAGO A S, ANSAR A S, GAZDZICKI P, et al. Low cost bipolar plates for large scale PEM electrolyzers[J]. ECS Transactions, 2014, 64(3): 1039-1048.
|