1 |
CHEN S R, DAI F, CAI M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS Energy Letters, 2020, 5(10): 3140-3151.
|
2 |
KRAUSKOPF T, RICHTER F H, ZEIER W G, et al. Physicochemical concepts of the lithium metal anode in solid-state batteries[J]. Chemical Reviews, 2020, 120(15): 7745-7794.
|
3 |
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
|
4 |
YASIN G, ARIF M, MEHTAB T, et al. Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries[J]. Energy Storage Materials, 2020, 25: 644-678.
|
5 |
ZHANG Y H, QIAN J F, XU W, et al. Dendrite-free lithium deposition with self-aligned nanorod structure[J]. Nano Letters, 2014, 14(12): 6889-6896.
|
6 |
LIU Y F, WANG H R, LI J Y, et al. Mixed lithium fluoride-nitride ionic conducting interphase for dendrite-free lithium metal anode[J]. Applied Surface Science, 2021, 541: doi: 10.1016/j.apsusc.2020.148294.
|
7 |
LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858.
|
8 |
LIANG Z, LIN D C, ZHAO J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): 2862-2867.
|
9 |
CHOI B N, SEO J Y, KIM B, et al. Electro-deposition of the lithium metal anode on dendritic copper current collectors for lithium battery application[J]. Applied Surface Science, 2020, 506: doi: 10.1016/j.apsusc.2019.144884.
|
10 |
YANG H, FEY E O, TRIMM B D, et al. Effects of pulse plating on lithium electrodeposition, morphology and cycling efficiency[J]. Journal of Power Sources, 2014, 272: 900-908.
|
11 |
ARYANFAR A, BROOKS D, MERINOV B V, et al. Dynamics of lithium dendrite growth and inhibition: Pulse charging experiments and Monte Carlo calculations[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1721-1726.
|
12 |
MAYERS M Z, KAMINSKI J W, MILLER T F III. Suppression of dendrite formation via pulse charging in rechargeable lithium metal batteries[J]. The Journal of Physical Chemistry C, 2012, 116(50): 26214-26221.
|
13 |
VISHNUGOPI B S, HAO F, VERMA A, et al. Double-edged effect of temperature on lithium dendrites[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 23931-23938.
|
14 |
HWANG J K, OKADA H, HARAGUCHI R, et al. Ionic liquid electrolyte for room to intermediate temperature operating Li metal batteries: Dendrite suppression and improved performance[J]. Journal of Power Sources, 2020, 453: doi: 10.1016/j.jpowsour. 2020.227911.
|
15 |
LOVE C T, BATURINA O A, SWIDER-LYONS K E. Observation of lithium dendrites at ambient temperature and below[J]. ECS Electrochemistry Letters, 2015, 4(2): A24-A27.
|
16 |
QIU G R, LU L, LU Y, et al. Effects of pulse charging by triboelectric nanogenerators on the performance of solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28345-28350.
|
17 |
LI Q, TAN S, LI L L, et al. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries[J]. Science Advances, 2017, 3(7): doi: 10.1126/sciadv.1701246.
|
18 |
YONEMOTO F, NISHIMURA A, MOTOYAMA M, et al. Temperature effects on cycling stability of Li plating/stripping on Ta-doped Li7La3Zr2O12[J]. Journal of Power Sources, 2017, 343: 207-215.
|
19 |
ZHU R D, FENG J M, GUO Z S. In situ observation of dendrite behavior of electrode in half and full cells[J]. Journal of the Electrochemical Society, 2019, 166(6): A1107-A1113.
|
20 |
TANG C Y, DILLON S J. In situ scanning electron microscopy characterization of the mechanism for Li dendrite growth[J]. Journal of the Electrochemical Society, 2016, 163(8): A1660-A1665.
|
21 |
RAMASUBRAMANIAN A, YURKIV V, FOROOZAN T, et al. Lithium diffusion mechanism through solid-electrolyte interphase in rechargeable lithium batteries[J]. The Journal of Physical Chemistry C, 2019, 123(16): 10237-10245.
|
22 |
AKOLKAR R. Mathematical model of the dendritic growth during lithium electrodeposition[J]. Journal of Power Sources, 2013, 232: 23-28.
|
23 |
MONROE C, NEWMAN J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. Journal of the Electrochemical Society, 2005, 152(2): A396-A404.
|
24 |
OKAJIMA Y, SHIBUTA Y, SUZUKI T. A phase-field model for electrode reactions with Butler-Volmer kinetics[J]. Computational Materials Science, 2010, 50(1): 118-124.
|
25 |
WANG K L, XIAO Y, PEI P C, et al. A phase-field model of dendrite growth of electrodeposited zinc[J]. Journal of the Electrochemical Society, 2019, 166(10): D389-D394.
|
26 |
CHENG F, HU Y, ZHAO L X. Analysis of weak solutions for the phase-field model for lithium-ion batteries[J]. Applied Mathematical Modelling, 2020, 78: 185-199.
|
27 |
REN Y, ZHOU Y, CAO Y. Inhibit of lithium dendrite growth in solid composite electrolyte by phase-field modeling[J]. The Journal of Physical Chemistry C, 2020, 124(23): 12195-12204.
|
28 |
CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model[J]. Journal of Power Sources, 2015, 300: 376-385.
|
29 |
YAN H H, BIE Y H, CUI X Y, et al. A computational investigation of thermal effect on lithium dendrite growth[J]. Energy Conversion and Management, 2018, 161: 193-204.
|
30 |
MU W Y, LIU X L, WEN Z, et al. Numerical simulation of the factors affecting the growth of lithium dendrites[J]. Journal of Energy Storage, 2019, 26: 100921.
|
31 |
HONG Z J, VISWANATHAN V. Prospect of thermal shock induced healing of lithium dendrite[J]. ACS Energy Letters, 2019, 4(5): 1012-1019.
|
32 |
HARRIS S J, TIMMONS A, BAKER D R, et al. Direct in situ measurements of Li transport in Li-ion battery negative electrodes[J]. Chemical Physics Letters, 2010, 485(4/5/6): 265-274.
|
33 |
YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J]. Electrochimica Acta, 2018, 265: 609-619.
|
34 |
MARASCHKY A, AKOLKAR R. Temperature dependence of dendritic lithium electrodeposition: A mechanistic study of the role of transport limitations within the SEI[J]. Journal of the Electrochemical Society, 2020, 167(6): doi: 10.1149/1945-7111/ab7ce2.
|
35 |
GAO L T, GUO Z S. Phase-field simulation of Li dendrites with multiple parameters influence[J]. Computational Materials Science, 2020, 183: doi: 10.1016/j.commatsci.2020.109919.
|
36 |
XU S S, CHEN K H, DASGUPTA N P, et al. Evolution of dead lithium growth in lithium metal batteries: Experimentally validated model of the apparent capacity loss[J]. Journal of the Electrochemical Society, 2019, 166(14): A3456-A3463.
|
37 |
KUSHIMA A, SO K P, SU C, et al. Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams[J]. Nano Energy, 2017, 32: 271-279.
|
38 |
HSIEH Y C, LEIßING M, NOWAK S, et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy[J]. Cell Reports Physical Science, 2020, 1(8): doi: 10.1016/j.xcrp. 2020.100139.
|