储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 834-851.doi: 10.19799/j.cnki.2095-4239.2022.0012
收稿日期:
2022-01-06
修回日期:
2022-01-22
出版日期:
2022-03-05
发布日期:
2022-03-11
通讯作者:
王家钧
E-mail:43178902@qq.com;jiajunhit@hit.edu.cn
作者简介:
安汉文(1997—),男,博士研究生,研究方向为同步辐射成像方法及固态电池,E-mail:基金资助:
Hanwen AN(), Shengkai MO, Menglu LI, Jiajun WANG()
Received:
2022-01-06
Revised:
2022-01-22
Online:
2022-03-05
Published:
2022-03-11
Contact:
Jiajun WANG
E-mail:43178902@qq.com;jiajunhit@hit.edu.cn
摘要:
锂离子电池因具有较高的能量密度已广泛应用于便携式电子产品中。然而,它们在电动汽车和电网储能方面的潜在应用需要更高的能量密度。开发下一代电化学能源存储器件仍然存在巨大的挑战。同步加速X射线成像技术由于具有无损性、元素敏感性和高穿透性等天然优势,正受到越来越多地关注。本文重点介绍了同步辐射的X射线成像技术及其相关应用,以了解能量材料的物理/化学性质和反应机理。讨论了几种主要的X射线成像技术,包括X射线投影成像、透射X射线显微镜(TXM)、扫描透射X射线显微镜(STXM)、X射线荧光显微镜(XFM)和相干衍射成像(CDI)。希望这篇综述能够拓宽读者对X射线成像技术的认识,并为能源材料的研究提供新思路和可能性。
中图分类号:
安汉文, 莫生凯, 李梦璐, 王家钧. 同步辐射多模态成像技术在储能电池领域的研究进展[J]. 储能科学与技术, 2022, 11(3): 834-851.
Hanwen AN, Shengkai MO, Menglu LI, Jiajun WANG. Research progress of synchrotron radiation multimodal imaging technology in field of energy storage batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 834-851.
1 | ZUBI G, DUFO-LÓPEZ R, CARVALHO M, et al. The lithium-ion battery: State of the art and future perspectives[J]. Renewable and Sustainable Energy Reviews, 2018, 89: 292-308. |
2 | AN H W, LIU Q S, AN J L, et al. Coupling two-dimensional fillers with polymer chains in solid polymer electrolyte for room-temperature dendrite-free lithium-metal batteries[J]. Energy Storage Materials, 2021, 43: 358-364. |
3 | DONG L W, LIU J P, CHEN D J, et al. Suppression of polysulfide dissolution and shuttling with glutamate electrolyte for lithium sulfur batteries[J]. ACS Nano, 2019, 13(12): 14172-14181. |
4 | 李雪, 龚正良. PEO基聚合物电解质及其锂硫电池性能研究[J]. 电化学, 2020, 26(3): 338-346. |
LI X, GONG Z L. Poly(ethylene oxide) based polymer electrolytes for all-solid-state Li-S batteries[J]. Journal of Electrochemistry, 2020, 26(3): 338-346. | |
5 | 潘晓娜, 刘丽来, 王治璞, 等. 离子液体凝胶聚合物电解质的三元组分相互作用研究[J]. 电化学, 2020, 26(3): 406-412. |
PAN X N, LIU L L, WANG Z P, et al. The interaction of ternary components of ionic liquid gel polymer electrolytes for lithium metal batteries[J]. Journal of Electrochemistry, 2020, 26(3): 406-412. | |
6 | MA Y L, ZHOU Z X, LI C J, et al. Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive[J]. Energy Storage Materials, 2018, 11: 197-204. |
7 | YU Z J, WANG J J, LIU Y J. High-dimensional and high-resolution X-ray tomography for energy materials science[J]. MRS Bulletin, 2020, 45(4): 283-289. |
8 | 王晗, 安汉文, 单红梅, 等. 全固态电池界面的研究进展[J]. 物理化学学报, 2021, 37(11): 35-48. |
WANG H, AN H W, SHAN H M, et al. Research progress on interfaces of all-solid-state batteries[J]. Acta Physico Chimica Sinica, 2021, 37(11): 35-48. | |
9 | LOU S F, YU Z J, LIU Q S, et al. Multi-scale imaging of solid-state battery interfaces: From atomic scale to macroscopic scale[J]. Chem, 2020, 6(9): 2199-2218. |
10 | TANG F C, WU Z B, YANG C, et al. Synchrotron X-ray tomography for rechargeable battery research: Fundamentals, setups and applications[J]. Small Methods, 2021, 5(9): doi: 10.1002/smtd. 202100557. |
11 | 李婷, 杨汉西. 电化学转换反应及其在二次电池中的应用[J]. 电化学, 2015, 21(2): 115-122. |
LI T, YANG H X. Electrochemical conversion reactions and their applications for rechargeable batteries[J]. Journal of Electrochemistry, 2015, 21(2): 115-122. | |
12 | WANG J J, CHEN-WIEGART Y C K, WANG J. In situ three-dimensional synchrotron X-ray nanotomography of the (de)lithiation processes in tin anodes[J]. Angewandte Chemie International Edition, 2014, 53(17): 4460-4464. |
13 | WANG L G, WANG J J, GUO F M, et al. Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques[J]. Nano Energy, 2018, 43: 184-191. |
14 | 宋亚杰, 孙雪, 任丽萍, 等. 同步辐射表征技术在金属空气电池研究中的应用[J]. 电化学, 2021, doi: 10.13208/j.electrochem.210846. |
SONG Y J, SUN X, REN L P, et al. Synchrotron X-ray characterization of metal-air batteries[J]. Journal of Electrochemistry, 2021, doi: 10.13208/j.electrochem.210846. | |
15 | LOU S F, SUN N, ZHANG F, et al. Tracking battery dynamics by operando synchrotron X-ray imaging: Operation from liquid electrolytes to solid-state electrolytes[J]. Accounts of Materials Research, 2021, 2(12): 1177-1189. |
16 | 侯孟炎, 鲍洪亮, 王珂, 等. 富锂锰基材料xLi2MnO3 ·(1-x)LiMn1/3Ni1/3Co1/3O2(x=0.3, 0.5, 0.7)的电化学和同步辐射研究[J]. 电化学, 2016, 22(3): 288-298. |
HOU M Y, BAO H L, WANG K, et al. Electrochemical and in situ X-ray absorption fine structure study of Li-rich cathode materials[J]. Journal of Electrochemistry, 2016, 22(3): 288-298. | |
17 | LOU S F, CHENG X Q, GAO J L, et al. Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage[J]. Energy Storage Materials, 2018, 11: 57-66. |
18 | CAO C T, TONEY M F, SHAM T K, et al. Emerging X-ray imaging technologies for energy materials[J]. Materials Today, 2020, 34: 132-147. |
19 | WANG L G, WANG J J, ZUO P J. Probing battery electrochemistry with in operando synchrotron X-ray imaging techniques[J]. Small Methods, 2018, 2(8): doi: 10.1002/smtd.201700293. |
20 | SHEN F Y, DIXIT M B, XIAO X H, et al. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography[J]. ACS Energy Letters, 2018, 3(4): 1056-1061. |
21 | WANG J J, CHEN-WIEGART Y C K, WANG J. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy[J]. Nature Communications, 2014, 5: doi: 10.1038/ncomms5570. |
22 | ZHANG F, LOU S, LI S, et al. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage[J]. Nature Communications, 2020, 11: doi: 10.1038/S41467-020-16824-2. |
23 | NELSON WEKER J, TONEY M F. Emerging in situ and operando nanoscale X-ray imaging techniques for energy storage materials[J]. Advanced Functional Materials, 2015, 25(11): 1622-1637. |
24 | BEHRENS S, KAPPLER A, OBST M. Linking environmental processes to the in situ functioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM)[J]. Environmental Microbiology, 2012, 14(11): 2851-2869. |
25 | LIM J, LI Y Y, ALSEM D H, et al. Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles[J]. Science, 2016, 353(6299): 566-571. |
26 | LIU J, WANG B Q, BANIS M N, et al. Investigation of amorphous to crystalline phase transition of sodium titanate by X-ray absorption spectroscopy and scanning transmission X-ray microscopy[J]. Canadian Journal of Chemistry, 2017, 95(11): 1163-1169. |
27 | DE SMIT E, SWART I, CREEMER J F, et al. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy[J]. Nature, 2008, 456(7219): 222-225. |
28 | MIAO J W, CHARALAMBOUS P, KIRZ J, et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens[J]. Nature, 1999, 400(6742): 342-344. |
29 | LOU S F, ZHANG F, FU C K, et al. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond[J]. Advanced Materials, 2021, 33(6): doi: 10.1002/adma.202000721. |
30 | WANG J J, CHEN-WIEGART Y C, WANG J. In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging[J]. Chemical Communications, 2013, 49(58): 6480-6482. |
31 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
32 | ZHAO Y, ZHENG K, SUN X L. Addressing interfacial issues in liquid-based and solid-state batteries by atomic and molecular layer deposition[J]. Joule, 2018, 2(12): 2583-2604. |
33 | LOU S F, LIU Q S, ZHANG F, et al. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries[J]. Nature Communications, 2020, 11: doi: 10. 1038/S41467-020-19528-9. |
34 | DENG J J, VINE D J, CHEN S, et al. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): 2314-2319. |
35 | YANG Y, XU R, ZHANG K, et al. Quantification of heterogeneous degradation in Li-ion batteries[J]. Advanced Energy Materials, 2019, 9(25): doi: 10.1002/aenm.201900674. |
36 | XU Z R, RAHMAN M M, MU L Q, et al. Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(44): 21859-21884. |
37 | BANIS M N, YADEGARI H, SUN Q, et al. Revealing the charge/discharge mechanism of Na-O2 cells by in situ soft X-ray absorption spectroscopy[J]. Energy & Environmental Science, 2018, 11(8): 2073-2077. |
38 | HAIBEL A, MANKE I, MELZER A, et al. In situ microtomographic monitoring of discharging processes in alkaline cells[J]. Journal of the Electrochemical Society, 2010, 157(4): doi: 10.1149/1.3294566. |
39 | SHEARING P R, HOWARD L E, JØRGENSEN P S, et al. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery[J]. Electrochemistry Communications, 2010, 12(3): 374-377. |
40 | EASTWOOD D S, BRADLEY R S, TARIQ F, et al. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 324: 118-123. |
41 | WALDMANN T, ITURRONDOBEITIA A, KASPER M, et al. Post-mortem analysis of aged lithium-ion batteries: Disassembly methodology and physico-chemical analysis techniques[J]. Journal of the Electrochemical Society, 2016, 163(10): A2149-A2164. |
42 | COOPER S J, EASTWOOD D S, GELB J, et al. Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries[J]. Journal of Power Sources, 2014, 247: 1033-1039. |
43 | EBNER M, CHUNG D W, GARCíA R E, et al. Tortuosity anisotropy in Lithium-ion battery electrodes[J]. Advanced Energy Materials, 2014, 4(5): doi: 10.1002/aenm.201301278. |
44 | KEHRWALD D, SHEARING P R, BRANDON N P, et al. Local tortuosity inhomogeneities in a lithium battery composite electrode[J]. Journal of the Electrochemical Society, 2011, 158(12): doi: 10. 1149/2.079112jes. |
45 | FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7924. |
46 | QIAN G N, MONACO F, MENG D C, et al. The role of structural defects in commercial lithium-ion batteries[J]. Cell Reports Physical Science, 2021, 2(9): doi: 10.1016/j.xcrp.2021.100554. |
47 | BESLI M, XIA S H, KUPPAN S, et al. Mesoscale chemomechanical interplay of the LiNi0.8Co0.15Al0.05O2 cathode in solid-state polymer batteries[J]. Chemistry of Materials, 2019, 31(2): 491-501. |
48 | EBNER M, MARONE F, STAMPANONI M, et al. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries[J]. Science, 2013, 342(6159): 716-720. |
49 | LI J Z, LI S F, ZHANG Y X, et al. Multiphase, multiscale chemomechanics at extreme low temperatures: Battery electrodes for operation in a wide temperature range[J]. Advanced Energy Materials, 2021, 11(37): doi: 10.1002/aenm.202170143. |
50 | YU Z J, ZHANG X Y, FU C K, et al. Dendrites in solid-state batteries: Ion transport behavior, advanced characterization, and interface regulation[J]. Advanced Energy Materials, 2021, 11(18): doi: 10.1002/aenm.202003250. |
51 | LIU Q S, ZHU G, LI R H, et al. Fast lithium transport kinetics regulated by low energy-barrier LixMnO2 for long-life lithium metal batteries[J]. Energy Storage Materials, 2021, 41: 1-7. |
52 | EASTWOOD D S, BAYLEY P M, CHANG H J, et al. Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging[J]. Chemical Communications, 2015, 51(2): 266-268. |
53 | HARRY K J, HALLINAN D T, PARKINSON D Y, et al. Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes[J]. Nature Materials, 2014, 13(1): 69-73. |
54 | DIXIT M B, REGALA M, SHEN F Y, et al. Tortuosity effects in garnet-type Li7La3Zr2O12 solid electrolytes[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2022-2030. |
55 | KAN W H, WEI C X, CHEN D C, et al. Evolution of local structural ordering and chemical distribution upon delithiation of a rock salt-structured Li1.3Ta0.3Mn0.4O2 cathode[J]. Advanced Functional Materials, 2019, 29(17): doi: 10.1002/adfm.201808294. |
56 | SUN N, LIU Q S, CAO Y, et al. Anisotropically electrochemical-mechanical evolution in solid-state batteries and interfacial tailored strategy[J]. Angewandte Chemie International Edition, 2019, 58(51): 18647-18653. |
57 | YU Z J, WANG J J, WANG L G, et al. Unraveling the origins of the "unreactive core" in conversion electrodes to trigger high sodium-ion electrochemistry[J]. ACS Energy Letters, 2019, 4(8): 2007-2012. |
58 | LIN F, NORDLUND D, LI Y Y, et al. Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2015.4. |
59 | WANG J J, KAREN CHEN-WIEGART Y C, ENG C, et al. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms12372. |
60 | YI T F, LI X Y, LIU H P, et al. Recent developments in the doping and surface modification of LiFePO4 as cathode material for power lithium ion battery[J]. Ionics, 2012, 18(6): 529-539. |
61 | LU X K, BERTEI A, FINEGAN D P, et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling[J]. Nature Communications, 2020, 11: doi: 10.1038/S41467-020-15811-X. |
62 | LU X K, DAEMI S R, BERTEI A, et al. Microstructural evolution of battery electrodes during calendering[J]. Joule, 2020, 4(12): 2746-2768. |
63 | ZHANG K, REN F, WANG X L, et al. Finding a needle in the haystack: Identification of functionally important minority phases in an operating battery[J]. Nano Letters, 2017, 17(12): 7782-7788. |
64 | QIAN G N, ZHANG J, CHU S Q, et al. Understanding the mesoscale degradation in nickel-rich cathode materials through machine-learning-revealed strain-redox decoupling[J]. ACS Energy Letters, 2021, 6(2): 687-693. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[5] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[6] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[7] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[8] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[9] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[10] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[11] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[12] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
[13] | 燕乔一, 吴锋, 陈人杰, 李丽. 锂离子电池负极石墨回收处理及资源循环[J]. 储能科学与技术, 2022, 11(6): 1760-1771. |
[14] | 沈秀, 曾月劲, 李睿洋, 李佳霖, 李伟, 张鹏, 赵金保. γ射线辐照交联原位固态化阻燃锂离子电池[J]. 储能科学与技术, 2022, 11(6): 1816-1821. |
[15] | 丁奕, 杨艳, 陈锴, 曾涛, 黄云辉. 锂离子电池智能消防及其研究方法[J]. 储能科学与技术, 2022, 11(6): 1822-1833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||