1 |
GROSJEAN C, MIRANDA P H, PERRIN M, et al. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1735-1744.
|
2 |
卢侠, 李泓. 锂电池基础科学问题(Ⅱ)——电池材料缺陷化学[J]. 储能科学与技术, 2013, 2(2): 157-164.
|
|
LU X, LI H. Fundamental scientific aspects of lithium batteries (Ⅱ)—Defect chemistry in battery materials[J]. Energy Storage Science and Technology, 2013, 2(2): 157-164.
|
3 |
FLURI A, MARCOLONGO A, RODDATIS V, et al. Enhanced proton conductivity in Y-doped BaZrO3 via strain engineering[J]. Advanced Science, 2017, 4(12): doi: 10.1002/advs.201700467.
|
4 |
YAN J, WANG Q, WEI T, et al. Supercapacitors: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4): doi: 10.1002/aenm.201300816.
|
5 |
MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2: doi: 10.1038/natrevmats.2016.103.
|
6 |
HE B, YE A, CHI S, et al. CAVD, towards better characterization of void space for ionic transport analysis[J]. Scientific Data, 2020, 7: doi: 10.1038/s41597-020-0491-x.
|
7 |
BLATOV V A, SHEVCHENKO A P, PROSERPIO D M. Applied topological analysis of crystal structures with the program package ToposPro[J]. Crystal Growth & Design, 2014, 14(7): 3576-3586.
|
8 |
CHEN H M, WONG L L, ADAMS S. SoftBV—A software tool for screening the materials genome of inorganic fast ion conductors[J]. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, 2019, 75(Pt 1): 18-33.
|
9 |
WONG L L, PHUAH K C, DAI R Y, et al. Bond valence pathway analyzer—An automatic rapid screening tool for fast ion conductors within softBV[J]. Chemistry of Materials, 2021, 33(2): 625-641.
|
10 |
ZOU Z Y, MA N, WANG A P, et al. Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON[J]. Advanced Energy Materials, 2020, 10(30): doi: 10.1002/aenm.202001486.
|
11 |
MOON J, LEE B, CHO M, et al. Ab initio and kinetic Monte Carlo simulation study of lithiation in crystalline and amorphous silicon[J]. Journal of Power Sources, 2014, 272: 1010-1017.
|
12 |
MURCH G E. The haven ratio in fast ionic conductors[J]. Solid State Ionics, 1982, 7(3): 177-198.
|
13 |
LU X Y. Application of the Nernst-Einstein equation to concrete[J]. Cement and Concrete Research, 1997, 27(2): 293-302.
|
14 |
DE KLERK N J J, VAN DER MAAS E, WAGEMAKER M. Analysis of diffusion in solid-state electrolytes through MD simulations, improvement of the Li-ion conductivity in β-Li3PS4 as an example[J]. ACS Applied Energy Materials, 2018, 1(7): 3230-3242.
|
15 |
HE X, ZHU Y, MO Y. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8: doi: 10.1038/ncomms15893.
|
16 |
ZHU P P, SMITH R W. Dynamic simulation of crystal growth by Monte Carlo method—I. Model description and kinetics[J]. Acta Metallurgica et Materialia, 1992, 40(4): 683-692.
|
17 |
BÉJAUD R, DURINCK J, BROCHARD S. Twin-interface interactions in nanostructured Cu/Ag: Molecular dynamics study[J]. Acta Materialia, 2018, 144: 314-324.
|
18 |
LYU D, WANG W, LIU J P, et al. Phase diagrams and magnetic properties of a ferrimagnetic Ising bilayer superlattice: A Monte Carlo study[J]. Journal of Magnetism and Magnetic Materials, 2018, 465: 348-359.
|
19 |
KAR P, HARINIPRIYA S. Modeling of lithium ion batteries employing grand canonical Monte Carlo and multiscale simulation[J]. Journal of the Electrochemical Society, 2014, 161(5): A726-A735.
|
20 |
MORGAN B J. Lattice-geometry effects in garnet solid electrolytes: A lattice-gas Monte Carlo simulation study[J]. Royal Society Open Science, 2017, 4(11): doi: 10.1098/rsos.170824.
|
21 |
WANG W, BI J L, LIU R J, et al. Effects of the single-ion anisotropy on magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire[J]. Superlattices and Microstructures, 2016, 98: 433-447.
|
22 |
MALIK R, ZHOU F, CEDER G. Phase diagram and electrochemical properties of mixed olivines from first-principles calculations[J]. Physical Review B, 2009, 79(21): doi: 10.1103/PhysRevB.79.214201.
|
23 |
RAN Y, ZOU Z, LIU B, et al. Towards prediction of ordered phases in rechargeable battery chemistry via group-subgroup transformation[J]. npj Computational Materials, 2021, 7: 1-11.
|
24 |
OZAWA K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system[J]. Solid State Ionics, 1994, 69(3/4): 212-221.
|
25 |
KIM J H, MYUNG S T, YOON C S, et al. Comparative study of LiNi0.5Mn1.5O4- δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3̄m and P4332[J]. Chemistry of Materials, 2004, 16(5): 906-914.
|
26 |
WU H, PI J C, LIU Q, et al. All-inorganic lead free double perovskite Li-battery anode material hosting high Li+ ion concentrations[J]. The Journal of Physical Chemistry Letters, 2021, 12(17): 4125-4129.
|
27 |
HUANG X. Advances in Li-ion batteries and related materials[J]. Advances in Materials in China, 2010, 29(8): 46-52.
|
28 |
GEYER C J. Practical Markov chain Monte Carlo[J]. Statistical Science, 1992, 7(4): 473-483.
|
29 |
DARLING R, NEWMAN J. Dynamic Monte Carlo simulations of diffusion in LiyMn2O4[J]. Journal of the Electrochemical Society, 1999, 146(10): 3765-3772.
|
30 |
SHIMIZU A, TACHIKAWA H. Dynamics behavior of lithium in graphite lattice: MD calculation approach[J]. Journal of Physics and Chemistry of Solids, 2000, 61(12): 1895-1899.
|
31 |
DUANE S, KENNEDY A D, PENDLETON B J, et al. Hybrid Monte Carlo[J]. Physics Letters B, 1987, 195(2): 216-222.
|
32 |
HARDY J, DE PAZZIS O, POMEAU Y. Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions[J]. Physical Review A, 1976, 13(5): 1949-1961.
|
33 |
CARLO C M. Markov chain Monte Carlo and Gibbs sampling[R]. Lecture notes for EEB, 2004, 581.
|
34 |
METROPOLIS N, ULAM S. The Monte Carlo method[J]. Journal of the American Statistical Association, 1949, 44(247): 335-341.
|
35 |
BROWNE C B, POWLEY E, WHITEHOUSE D, et al. A survey of Monte Carlo tree search methods[J]. IEEE Transactions on Computational Intelligence and AI in Games, 2012, 4(1): 1-43.
|
36 |
ZSIGMOND G, LIEUTENANT K, MEZEI F. Monte Carlo simulations of neutron scattering instruments by VITESS: Virtual instrumentation tool for ESS[J]. Neutron News, 2002, 13(4): 11-14.
|
37 |
FRANCIS Z, INCERTI S, ZEIN S A, et al. Monte Carlo simulation of SARS-CoV-2 radiation-induced inactivation for vaccine development[J]. Radiation Research, 2021, 195(3): 221-229.
|
38 |
TURCHIN V F. On the computation of multidimensional integrals by the Monte-Carlo method[J]. Theory of Probability & Its Applications, 1971, 16(4): 720-724.
|
39 |
YANG Z P, MING J, QIU C X, et al. A multigrid multilevel Monte Carlo method for stokes-darcy model with random hydraulic conductivity and beavers-Joseph condition[J]. Journal of Scientific Computing, 2022, 90(2): 1-30.
|
40 |
BENES N E, BOUWMEESTER H J M, VERWEIJ H. Multi-component lattice gas diffusion[J]. Chemical Engineering Science, 2002, 57(14): 2673-2678.
|
41 |
BROOKS S, GELMAN A, JONES G, et al. Handbook of Markov chain Monte Carlo[M]. Florida: CRC Press, 2011.
|
42 |
CHENG J R, YUAN X H, ZHAO L, et al. GCMC simulation of hydrogen physisorption on carbon nanotubes and nanotube arrays[J]. Carbon, 2004, 42(10): 2019-2024.
|
43 |
COSOLI P, FERRONE M, PRICL S, et al. Hydrogen sulphide removal from biogas by zeolite adsorption: Part I. GCMC molecular simulations[J]. Chemical Engineering Journal, 2008, 145(1): 86-92.
|
44 |
DO D D, DO H D. Pore characterization of carbonaceous materials by DFT and GCMC simulations: A review[J]. Adsorption Science & Technology, 2003, 21(5): 389-423.
|
45 |
GAVILÁN-ARRIAZU E M, PINTO O A, LÓPEZ M B, et al. The kinetic origin of the Daumas-Hérold model for the Li-ion/graphite intercalation system[J]. Electrochemistry Communications, 2018, 93: 133-137.
|
46 |
DER V A, CEDER G, ASTA M, et al. First-principles theory of ionic diffusion with nondilute carriers[J]. Physical Review B, 2001, 64(18): doi: 10.1103/PhysRevB.64.184307.
|
47 |
METHEKAR R N, NORTHROP P W, CHEN K J, et al. Kinetic Monte Carlo simulation of surface heterogeneity in graphite anodes for lithium-ion batteries: Passive layer formation[C]//Proceedings of the 2011 American Control Conference, 2011: 1512-1517.
|
48 |
AKKERMANS R L, SPENLEY N A, ROBERTSON S H. Monte Carlo methods in materials studio[J]. Molecular Simulation, 2013, 39(14/15): 1153-1164.
|
49 |
CHATTERJEE A, VLACHOS D G. An overview of spatial microscopic and accelerated kinetic Monte Carlo methods[J]. Journal of Computer-Aided Materials Design, 2007, 14(2): 253-308.
|
50 |
FRISCH U, HASSLACHER B, POMEAU Y. Lattice-gas automata for the navier-stokes equation[J]. Physical Review Letters, 1986, 56(14): 1505-1508.
|
51 |
LEE J, URBAN A, LI X, et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries[J]. Science, 2014, 343(6170): 519-522.
|
52 |
WANG W, CHEN D D, LYU D, et al. Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic Ising nanoparticle with hexagonal core-shell structure[J]. Journal of Physics and Chemistry of Solids, 2017, 108: 39-51.
|
53 |
MAAZI N, BOULECHFAR R. A modified grain growth Monte Carlo algorithm for increased calculation speed in the presence of Zener drag effect[J]. Materials Science and Engineering: B, 2019, 242: 52-62.
|
54 |
LONGONE P, MARTÍN Á, RAMIREZ-PASTOR A J. Lattice-gas Monte Carlo study of sI clathrate hydrates of ethylene: Stability analysis and cell distortion[J]. Fluid Phase Equilibria, 2020, 521: doi: 10.1016/j.fluid.2020.112739.
|
55 |
METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21(6): 1087-1092.
|
56 |
YANG Y, WANG W, LYU D, et al. Monte Carlo study of magnetic behaviors in a quadrangle ferrimagnetic Ising nanoisland[J]. Journal of Physics and Chemistry of Solids, 2018, 120: 109-122.
|
57 |
GRIESHAMMER S, EISELE S. Kinetic Monte Carlo simulations for solid state ionics: Case studies with the MOCASSIN program[J]. Diffusion Foundations, 2021, 29: 117-142.
|
58 |
HOFFMANN M J, MATERA S, REUTER K. Kmos: A lattice kinetic Monte Carlo framework[J]. Computer Physics Communications, 2014, 185(7): 2138-2150.
|
59 |
XIAO P H, HENKELMAN G. Kinetic Monte Carlo study of Li intercalation in LiFePO4[J]. ACS Nano, 2018, 12(1): 844-851.
|
60 |
HE B, MI P H, YE A J, et al. A highly efficient and informative method to identify ion transport networks in fast ion conductors[J]. Acta Materialia, 2021, 203: doi: 10.1016/j.actamat.2020.116490.
|
61 |
THANGADURAI V, NARAYANAN S, PINZARU D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review[J]. Chemical Society Reviews, 2014, 43(13): 4714-4727.
|
62 |
ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): doi: 10.1039/C1EE01598B.
|
63 |
YAMADA A, CHUNG S C, HINOKUMA K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society, 2001, 148(3): doi: 10.1149/1.1348257.
|
64 |
HIN C. Kinetic Monte Carlo simulations of anisotropic lithium intercalation into LixFePO4 electrode nanocrystals[J]. Advanced Functional Materials, 2011, 21(13): 2477-2487.
|
65 |
ZHENG T, DAHN J R. Lattice-gas model to understand voltage profiles of LiNixMn2– xO4/Lielectrochemical cells[J]. Physical Review B, 1997, 56(7): 3800-3805.
|
66 |
PERSSON K, HINUMA Y, MENG Y S, et al. Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations[J]. Physical Review B, 2010, 82(12): doi: 10.1103/PhysRevB.82.125416.
|
67 |
OUYANG C Y, SHI S Q, WANG Z X, et al. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations[J]. Journal of Physics: Condensed Matterial, 2004, 16(13): 2265-2272.
|
68 |
KUMAR P P, YASHONATH S. Ionic conduction in the solid state[J]. Journal of Chemical Sciences, 2006, 118(1): 135-154.
|
69 |
HUANG C M, JOANNE C L, PATNAIK B S V, et al. Monte Carlo simulation of grain growth in polycrystalline materials[J]. Applied Surface Science, 2006, 252(11): 3997-4002.
|
70 |
KOTRLA M. Numerical simulations in the theory of crystal growth[J]. Computer Physics Communications, 1996, 97(1/2): 82-100.
|
71 |
BARAI P, FENG Z G, KONDO H, et al. Multiscale computational model for particle size evolution during coprecipitation of Li-ion battery cathode precursors[J]. The Journal of Physical Chemistry B, 2019, 123(15): 3291-3303.
|
72 |
CHEN X J, ZHAO H, AI W S. Study on the competitive growth mechanism of SiC polytypes using Kinetic Monte Carlo method[J]. Journal of Crystal Growth, 2021, 559: doi: 10.1016/j.jcrysgro. 2021.126042.
|
73 |
HAO F, LIU Z X, BALBUENA P B, et al. Mesoscale elucidation of solid electrolyte interphase layer formation in Li-ion battery anode[J]. The Journal of Physical Chemistry C, 2017, 121(47): 26233-26240.
|
74 |
HUANG J, ZHONG P, HA Y, et al. Non-topotactic reactions enable high rate capability in Li-rich cathode materials[J]. Nature Energy, 2021, 6(7): 706-714.
|
75 |
SHI S Q, GAO J, LIU Y, et al. Multi-scale computation methods: Their applications in lithium-ion battery research and development[J]. Chinese Physics B, 2016, 25(1): doi: 10.1088/1674-1056/25/1/018212.
|