储能科学与技术 ›› 2022, Vol. 11 ›› Issue (4): 1093-1102.doi: 10.19799/j.cnki.2095-4239.2021.0496
收稿日期:
2021-09-23
修回日期:
2021-09-29
出版日期:
2022-04-05
发布日期:
2022-04-11
通讯作者:
肖遥
E-mail:huhaiyan@wzu.edu.cn;xiaoyao@wzu.edu.cn
作者简介:
胡海燕(1996—),女,博士研究生,研究方向为钠离子电池层状氧化物正极材料,E-mail: 基金资助:
Haiyan HU1(), Shulei CHOU1, Yao XIAO1,2()
Received:
2021-09-23
Revised:
2021-09-29
Online:
2022-04-05
Published:
2022-04-11
Contact:
Yao XIAO
E-mail:huhaiyan@wzu.edu.cn;xiaoyao@wzu.edu.cn
摘要:
O3型层状过渡金属氧化物NaNi0.5Mn0.5O2是目前最有应用前景的钠离子电池正极材料之一。然而,由于在充放电过程中过渡金属层的滑移,O3型正极材料伴随着多重不可逆的复杂相变,所以其应用受到了限制。另外,O3-NaNi0.5Mn0.5O2正极的容量主要集中在3 V左右的低电压区域,在充放电过程中这一区域很容易发生O3-P3相变,所以限制了其能量密度。本研究提出了一种精准的化学元素取代策略来解决这些问题。通过Sn4+掺杂来抑制过渡金属层的滑移,从而抑制循环过程中的不可逆相转变。同时,由于Sn4+具有独特的外层电子结构,在d轨道上没有单电子,无法与O 2p轨道发生杂化,所以O 2p轨道就只与Ni eg轨道发生杂化,增大了Ni—O键的离子度,提高了Ni的氧化还原电势。因此,NaNi0.5Sn0.5O2正极材料的中值电压高达3.28 V。同时,该电极材料表现出较为优异的电化学性能和动力学性质。本工作基于分子轨道杂化对O3型正极材料的氧化还原电势实现了可控调制,从而获得了具有高电压的钠离子电池层状氧化物正极材料。
中图分类号:
胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102.
Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102.
表3
各种已报道的钠离子电池正极材料中值电压的比较"
正极材料组成 | 合成方法 | 中值电压/V | 参考文献 |
---|---|---|---|
NaNi0.5Sn0.5O2 | 固相法 | 3.28 | 本文 |
Na0.66Li0.18Mn0.71Ni0.21Co0.08O2+δ | 共沉淀法+固相法 | 3.2 | [ |
Na0.44Co0.1Mn0.9O2 | 热聚合法 | 约2.667 | [ |
Na[Mn0.25Fe0.25Co0.25Ni0.25]O2 | 固相法 | 3.21 | [ |
Na0.9Ni0.45Mn0.55O2 | 溶胶凝胶法 | 3.03 | [ |
Na0.5[Li0.2Fe0.4Mn0.4]O2 | 溶胶凝胶法 | 2.85 | [ |
Na0.67Mn0.97Mo0.03O2 | 固相法 | 2.61 | [ |
Na4FeV(PO4)3 | 溶胶凝胶法 | 3.13 | [ |
Na3Fe2(PO4)(P2O7) | 喷雾干燥法 | 3.1 | [ |
NaFe0.45Co0.5Mg0.05O2 | 固相法 | 3.1 | [ |
Na0.9Cu0.22Fe0.30Mn0.48O2 | 固相法 | 3.2 | [ |
1 | DENG Z, LIN X, HUANG Z Y, et al. Recent progress on advanced imaging techniques for lithium-ion batteries[J]. Advanced Energy Materials, 2020, 11(2): doi: 10.1002/aenm.202000806. |
2 | MA Q, ZENG X X, YUE J, et al. Viscoelastic and nonflammable interface design-enabled dendrite-free and safe solid lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(13): doi: 10. 1002/aenm.201803854. |
3 | XIAO Y, WANG T, ZHU Y F, et al. Large-scale synthesis of the stable co-free layered oxide cathode by the synergetic contribution of multielement chemical substitution for practical sodium-ion battery[J]. Research, 2020: doi:10.34133/2020/1469301. |
4 | 张祖豪, 丁晓凯, 罗冬, 等. 富锂锰基层状氧化物正极材料面临的挑战及解决方案[J]. 储能科学与技术, 2021, 10(2): 408-424. |
ZHANG Z H, DING X K, LUO D, et al. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials[J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. | |
5 | JIN T, LI H X, ZHU K J, et al. Polyanion-type cathode materials for sodium-ion batteries[J]. Chemical Society Reviews, 2020, 49(8): 2342-2377. |
6 | ZHU Y F, XIAO Y, HUA W B, et al. Manipulating layered P2@P3 integrated spinel structure evolution for high-performance sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2020, 59(24): 9299-9304. |
7 | 张鹏, 赖兴强, 沈俊荣, 等. 固态锂电池研究及产业化进展[J]. 储能科学与技术, 2021, 10(3): 896-904. |
ZHANG P, LAI X Q, SHEN J R, et al. Research and industrialization progress of solid-state lithium battery[J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. | |
8 | XIAO Y, ZHU Y F, YAO H R, et al. A stable layered oxide cathode material for high-performance sodium-ion battery[J]. Advanced Energy Materials, 2019, 9(19): doi: 10.1002/aenm.201803978. |
9 | 田孟羽, 詹元杰, 闫勇, 等. 锂离子电池补锂技术[J]. 储能科学与技术, 2021, 10(3): 800-812. |
TIAN M Y, ZHAN Y J, YAN Y, et al. Replenishment technology of the lithium ion battery[J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. | |
10 | ZHANG J X, ZHOU X, WANG Y X, et al. Highly electrochemically-reversible mesoporous Na2FePO4 F/C as cathode material for high-performance sodium-ion batteries[J]. Small, 2019, 15(46): doi: 10.1002/smll.201903723. |
11 | XIAO Y, WANG P F, YIN Y X, et al. Exposing {010} active facets by multiple-layer oriented stacking nanosheets for high-performance capacitive sodium-ion oxide cathode[J]. Advanced Materials, 2018, 30(40): doi: 10.1002/adma.201803765. |
12 | CHEN G R, AN J, MENG Y M, et al. Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries[J]. Nano Energy, 2019, 57(2019): 157-165. |
13 | 任思佳, 田雷武, 邵钦君, 等. 助熔剂法制备单晶LiNi0.8Co0.1Mn0.1O2正极材料[J]. 储能科学与技术, 2020, 9(6): 1702-1713. |
REN S J, TIAN L W, SHAO Q J, et al. Synthesis of single-crystal LiNi0.8Mn0.1O2 by flux method[J]. Energy Storage Science and Technology, 2020, 9(6): 1702-1713. | |
14 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
15 | SUN H H, HWANG J Y, YOON C S, et al. Capacity degradation mechanism and cycling stability enhancement of AlF3-coated nanorod gradient Na(Ni0.65Co0.08Mn0.27)O2 cathode for sodium-ion batteries[J]. ACS Nano, 2018, 12(12): 12912-12922. |
16 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
17 | KIM S W, SEO D H, MA X, et al. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721. |
18 | ABRAHAM K M. How comparable are sodium-ion batteries to lithium-ion counterparts?[J]. ACS Energy Letters, 2020, 5(11): 3544-3547. |
19 | SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958. |
20 | 郑薇, 刘琼, 卢周广. 钠离子电池层状过渡金属氧化物中阴离子氧的氧化还原反应活性调控[J]. 储能科学与技术, 2020, 9(5): 1416-1427. |
ZHENG W, LIU Q, LU Z G. Modulating anionic redox reaction in layered transition metal oxides for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1416-1427. | |
21 | XIAO Y, WANG P F, YIN Y X, et al. A layered-tunnel intergrowth structure for high-performance sodium-ion oxide cathode[J]. Advanced Energy Materials, 2018, 8(22): doi: 10.1002/aenm.201800492. |
22 | NI Q, BAI Y, WU F, et al. Polyanion-type electrode materials for sodium-ion batteries[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600275. |
23 | 张香华, 骆微, 芮先宏, 等. 钠离子电池正极材料VOPO4 ·2H2O纳米片的合成与电化学性能[J]. 储能科学与技术, 2020, 9(5): 1410-1415. |
ZHANG X H, LUO W, RUI X H, et al. Preparation and electrochemical performance of VOPO4 ·2H2O nanosheet cathode for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1410-1415. | |
24 | WANG P F, GUO Y J, DUAN H, et al. Honeycomb-ordered Na3Ni1.5M0.5BiO6 (M = Ni, Cu, Mg, Zn) as high voltage layered cathodes for sodium-ion batteries[J]. ACS Energy Letters, 2017, 2(12): 2715-2722. |
25 | 周思宇, 唐正, 范景瑞, 等. 过渡金属氧化物微纳阵列在钠离子电池中的研究进展[J]. 储能科学与技术, 2020, 9(5): 1383-1395. |
ZHOU S Y, TANG Z Y, FAN J R, et al. Research progress of transition metal oxide micro-nano structured arrays for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1383-1395. | |
26 | LUO W, ALLEN M, RAJU V, et al. An organic pigment as a high-performance cathode for sodium-ion batteries[J]. Advanced Energy Materials, 2014, 4(15): doi: 10.1002/aenm.201400554. |
27 | SARAVANAN K, MASON C W, RUDOLA A, et al. The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries[J]. Advanced Energy Materials, 2013, 3(4): 444-450. |
28 | CHEN M Z, CHEN L N, HU Z, et al. Carbon-coated Na3.32Fe2.34(P2O7)2 cathode material for high-rate and long-life sodium-ion batteries[J]. Advanced Materials, 2017, 29(21): doi: 10.1002/adma. 201605535. |
29 | 闫琦, 兰元其, 姚文娇, 等. 聚阴离子型二次离子电池正极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 872-886. |
YAN Q, LAN Y Q, YAO W J, et al. Recent development of polyanionic cathodes for second ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 872-886. | |
30 | NIU Y B, GUO Y J, YIN Y X, et al. High-efficiency cathode sodium compensation for sodium-ion batteries[J]. Advanced Materials, 2020, 32(33): doi: 10.1002/adma.202001419. |
31 | CHEN M Z, HUA W B, XIAO J, et al. Development and investigation of a NASICON-type high-voltage cathode material for high-power sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2020, 59(6): 2449-2456. |
32 | FANG C, HUANG Y, YUAN L X, et al. A metal-organic compound as cathode material with superhigh capacity achieved by reversible cationic and anionic redox chemistry for high-energy sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2017, 56(24): 6793-6797. |
33 | YANG J, TANG M J, LIU H, et al. O3-type layered Ni-rich oxide: A high-capacity and superior-rate cathode for sodium-ion batteries[J]. Small, 2019, 15(52): doi: 10.1002/smll.201905311. |
34 | XIAO Y, ZHU Y F, LI L, et al. Structural insights into the dynamic and controlled multiphase evolution of layered-spinel heterostructured sodium oxide cathode[J]. Cell Reports Physical Science, 2021, 2(9): doi: 10.1016/j.xcrp.2021.100547. |
35 | WU X Y, JIN S F, ZHANG Z Z, et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries[J]. Science Advances, 2015, 1(8): doi: 10.1126/sciadv.1500330. |
36 | XIAO Y, ABBASI N M, ZHU Y F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J]. Advanced Functional Materials, 2020, 30(30): doi: 10. 1002/adfm.202001334. |
37 | 刘欢庆, 高旭, 陈军, 等. 钠离子电池层状氧化物正极: 层间滑移, 相变与性能[J]. 储能科学与技术, 2020, 9(5): 1327-1339. |
LIU H Q, GAO X, CHEN J, et al. Layered oxide cathode for sodium ion batteries: interlayer glide, phase transition and performance[J]. Energy Storage Science and Technology, 2020, 9(5): 1327-1339. | |
38 | KONG S M, KIM D, LEE K S, et al. Structural and thermodynamic understandings in Mn-based sodium layered oxides during anionic redox[J]. Advanced Science, 2020, 7(16): doi: 10.1002/advs. 202001263. |
39 | SHEN Q Y, ZHAO X D, LIU Y C, et al. Dual-strategy of cation-doping and nanoengineering enables fast and stable sodium-ion storage in a novel Fe/Mn-based layered oxide cathode[J]. Advanced Science, 2020, 7(21): doi: 10.1002/advs.202002199. |
40 | GUO S H, LIU P, YU H J, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2015, 54(20): 5894-5899. |
41 | GUO S H, YU H J, LIU P, et al. High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2[J]. Energy & Environmental Science, 2015, 8(4): 1237-1244. |
42 | XU G L, AMINE R, XU Y F, et al. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(7): 1677-1693. |
43 | DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(4): 81-85. |
44 | XIAO Y, ZHANG X D, ZHU Y F, et al. Suppressing manganese dissolution via exposing stable {111} facets for high-performance lithium-ion oxide cathode[J]. Advanced Science, 2019, 6(13): doi: 10.1002/advs.201801908. |
45 | LI C, GENG F S, HU B W, et al. Anionic redox in Na-based layered oxide cathodes: A review with focus on mechanism studies[J]. Materials Today Energy, 2020, 17(2020):doi:10.1016/j.mtener.2020.100474. |
46 | HOU Y N, LI X, LIU W, et al. ALD derived Fe3+-doping toward high performance P2-Na0.75Ni0.2Co0.2Mn0.6O2 cathode material for sodium ion batteries[J]. Materials Today Energy, 2019, 14: doi: 10.1016/j.mtener.2019.100353. |
47 | CABANA J, CHERNOVA N A, XIAO J, et al. Study of the transition metal ordering in layered NaxNix/2Mn1- x/2O2 (2/3 ≤ x ≤1) and consequences of Na/Li exchange[J]. Inorganic Chemistry, 2013, 52: 8540-8550. |
48 | CHEN X Q, ZHOU X L, HU M, et al. Stable layered P3/P2-Na0.66Co0. 5Mn0.5O2 cathode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3: 20708-20714. |
49 | KUBOTA K, YABUUCHI N, YOSHIDA H, et al. Layered oxides as positive electrode materials for Na-ion batteries[J]. MRS Bulletin, 2014, 39(5): 416-422. |
50 | KUBOTA K, KOMABA S. Review-practical issues and future perspective for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162: A2538-A2550. |
51 | RYU H H, HAN G, YU T Y, et al. Enhanced cycling stability of O3-type Na[Ni0.5Mn0.5]O2 cathode through Sn addition for sodium-ion batteries[J]. The Journal of Physical Chemistry C, 2021, 125(12): 6593-6600. |
52 | 刘冬冬, 徐守冬, 史文静, 等. 草酸前驱体法制备高性能钠离子电池正极材料 NaNi0.5Mn0.5O2[J]. 人工晶体学报, 2016, 45(8): 2101-2107. |
LIU D D, XU S D, SHI W J, et al. Preparation of NaNi0.5Mn0.5O2 with high-performance as cathode material for sodium ion batteries[J]. Journal of Synthetic Crystals, 2016, 45(8): 2101-2107. | |
53 | YUAN D D, WANG Y X, CAO Y L, et al. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8585-8591. |
54 | WANG P F, YAO H R, LIU X Y, et al. Ti-substituted NaNi0.5Mn0.5- xTixO2 cathodes with reversible O3-P3 phase transition for high-performance sodium-ion batteries[J]. Advanced Materials, 2017, 29(19): doi: 10. 1002/adma.201700210. |
55 | YAO H-R, WANG P-F, GONG Y, et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries[J]. Journal of the American Chemical Society, 2017, 139(25): 8440-8443. |
56 | WANG P F, XIN H, ZUO T T, et al. An abnormal 3. 7 Volt O3-type sodium-ion battery cathode[J]. Angewandte Chemie-International Edition, 2018, 57(27): 8178-8183. |
57 | KANG W, ZHANG Z, LEE P-K, et al. Copper substituted P2-type Na0.67CuxMn1- xO2: A stable high-power sodium-ion battery cathode[J]. Journal of Materials Chemistry A, 2015, 3(45): 22846-22852. |
58 | BUCHER N, HARTUNG S, FRANKLIN J B, et al. P2-NaxCoyMn1- yO2 (y=0, 0.1) as cathode materials in sodium-ion batteries—effects of doping and morphology to enhance cycling stability[J]. Chemistry of Materials, 2016, 28(7): 2041-2051. |
59 | MENG Y M, AN J, CHEN L, et al. A NaNi0.5Mn0.5SnxO2 cathode with anti-structural deformation enhancing long lifespan and super power for a sodium ion battery[J]. Chemical Communications, 2020, 56(58): 8079-8082. |
60 | SATHIYA M, JACQUET Q, DOUBLET M L, et al. A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes[J]. Advanced Energy Materials, 2018, 8(11): doi: 10.1002/aenm.201702599. |
61 | XIAO Y, ZHU Y F, XIANG W, et al. Deciphering an abnormal layered-tunnel heterostructure induced by chemical substitution for the sodium oxide cathode[J]. Angewandte Chemie-International Edition, 2020, 59(4): 1491-1495. |
62 | LI X, WU D, ZHOU Y N, et al. O3-type Na(Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries[J]. Electrochemistry Communications, 2014, 49(2014): 51-54. |
63 | CHEN J, LI L, WU L, et al. Enhanced cycle stability of Na0.9Ni0.45Mn0.55O2 through tailoring O3/P2 hybrid structures for sodium-ion batteries[J]. Journal of Power Sources, 2018, 406(2018): 110-117. |
64 | VEERASUBRAMANI G K, SUBRAMANIAN Y, PARK M S, et al. Enhanced sodium-ion storage capability of P2/O3 biphase by Li-ion substitution into P2-type Na0.5Fe0.5Mn0.5O2 layered cathode[J]. Electrochimica Acta, 2019, 296(2019): 1027-1034. |
65 | ZHANG L, WANG C, LIU Y, et al. Suppressing interlayer-gliding and Jahn-Teller effect in P2-type layered manganese oxide cathode via Mo doping for sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 426: doi:10.1016/j.cej.2021.130813. |
66 | HADOUCHI M, YAQOOB N, KAGHAZCHI P, et al. Fast sodium intercalation in Na3.41£0.59FeV(PO4)3: A novel sodium-deficient NASICON cathode for sodium-ion batteries[J]. Energy Storage Materials, 2021, 35(2021): 192-202. |
67 | CAO Y, YANG C, LIU Y, et al. A new polyanion Na3Fe2(PO4)P2O7 cathode with high electrochemical performance for sodium-ion batteries[J]. ACS Energy Letters, 2020, 5(12): 3788-3796. |
68 | YAO H R, WANG P F, WANG Y, et al. Excellent comprehensive performance of Na-based layered oxide benefiting from the synergetic contributions of multimetal ions[J]. Advanced Energy Materials, 2017, 7(15): doi: 10.1002/aenm.201700189. |
69 | MU L, XU S, LI Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials, 2015, 27(43): 6928. |
[1] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[2] | 武怿达, 张义, 詹元杰, 郭亚奇, 张辽, 刘兴江, 俞海龙, 赵文武, 黄学杰. 氧化硼修饰的钴酸锂材料及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1687-1692. |
[3] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[4] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[5] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[6] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
[7] | 孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200. |
[8] | 任重民, 王斌, 陈帅帅, 李华, 陈珍莲, 王德宇. 层状正极材料力学劣化及改善措施[J]. 储能科学与技术, 2022, 11(3): 948-956. |
[9] | 赵志强, 刘恒均, 徐熙祥, 潘圆圆, 李庆浩, 李洪森, 胡涵, 李强. 储能科学中的磁性表征技术[J]. 储能科学与技术, 2022, 11(3): 818-833. |
[10] | 冯一峰, 沈佳妮, 车海英, 马紫峰, 贺益君, 谈文, 杨庆亨. 钠离子电池健康状态预测[J]. 储能科学与技术, 2021, 10(4): 1407-1415. |
[11] | 田艳丰, 赵鑫鑫, 付启桐, 王哲, 赵旭章. 基于热-电-磁场耦合的高温蓄热导体结构分析[J]. 储能科学与技术, 2021, 10(3): 1051-1059. |
[12] | 刘当玲, 王诗敏, 高智慧, 徐露富, 夏书标, 郭洪. 三维NZSPO/PAN-[PEO-NaTFST]复合钠离子电池固体电解质[J]. 储能科学与技术, 2021, 10(3): 931-937. |
[13] | 周琳, 杨佯, 胡勇胜. 合金电极失效机制:体积膨胀?电解液分解?[J]. 储能科学与技术, 2021, 10(3): 813-820. |
[14] | 聂雪娇, 郭晋芝, 王美怡, 谷振一, 赵欣欣, 杨旭, 梁皓杰, 吴兴隆. 以废旧锰酸锂正极为原料制备Li0.25Na0.6MnO2钠离子电池正极材料的研究[J]. 储能科学与技术, 2020, 9(5): 1402-1409. |
[15] | 张香华, 骆微, 芮先宏, 余彦. 钠离子电池正极材料VOPO4·2H2O纳米片的合成与电化学性能[J]. 储能科学与技术, 2020, 9(5): 1410-1415. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||